...
首页> 外文期刊>Computational Materials Science >Mesoscopic computational model of covalent cross-links and mechanisms of load transfer in cross-linked carbon nanotube films with continuous networks of bundles
【24h】

Mesoscopic computational model of covalent cross-links and mechanisms of load transfer in cross-linked carbon nanotube films with continuous networks of bundles

机译:连续网络交联碳纳米管膜的共价交联和负荷转移机制的介观算模型

获取原文
获取原文并翻译 | 示例
           

摘要

An "effective bond model" of covalent cross-links between carbon nanotubes (CNTs) is developed for mesoscopic simulations of CNT materials. The cross-links are represented by discrete stretchable bonds between mesoscopic nanotube elements. These bonds induce forces in both the normal and tangential directions to the CNT surfaces. A general approach for fitting the model parameters based on results of atomistic simulations describing the pullout of a nanotube from a bundle is suggested. This approach is used to obtain sets of the best-fit parameters, recommended for simulations with (26,0) CNTs when cross-links are predominantly formed by single interstitial atoms. It is shown that quantitative agreement between the atomistic and mesoscopic simulations can be achieved if the equilibrium length of the mesoscopic cross-link bond is smaller than the equilibrium gap between pristine CNTs and an additional fitting parameter, which controls the direction of the cross-link force with respect to the geometrical bond, is introduced into the model. The developed model is used to simulate stretching and compression of a thin CNT film with a continuous network of bundles and to reveal the microscopic mechanisms of the mechanical load transfer. It is found that during stretching the cross-links create a transient percolating "load transfer network" that includes relatively small number of strained CNT segments, participating in the load transfer, while bending modes of CNTs are not activated. The structure of this network evolves with increasing strain, when breaking of certain cross-links irreversibly activates new paths of load transfer. During compression, mechanical response of the nanotube network is determined by the trade-off between stretching and bending of individual nanotubes, while growing correlations between motions of large bundles eventually result in the collective bending of the whole film.
机译:为CNT材料的介观模拟开发了碳纳米管(CNT)之间的共价交联的“有效键合模型”。交联由介于介于纳米管元件之间的离散可伸缩键来表示。这些键在正常和切向方向上诱导到CNT表面的力。提出了一种基于描述来自束的纳米管拉出的原子模拟结果的模型参数的一般方法。这种方法用于获得最佳拟合参数的组,当单个间隙原子主要形成时,建议使用(26,0)CNT的模拟。结果表明,如果介于介面交联键的平衡长度小于原始CNT和附加配合参数之间的平衡间隙,则可以实现原子和介面仿真之间的定量协议,并且控制交叉链路的方向将对几何键的力引入模型中。开发的模型用于模拟具有连续束的薄CNT膜的拉伸和压缩,并揭示机械负载转移的微观机制。发现在拉伸期间,交叉链路产生瞬态渗透“负载转移网络”,其包括相对少量的应变的CNT段,参与负载传输,而CNT的弯曲模式不会被激活。这种网络的结构随着应变的增加而发展,当断裂某些交叉链路时不可逆地激活了新的负载转移路径。在压缩期间,纳米管网络的机械响应由单个纳米管的拉伸和弯曲之间的折衷确定,同时大束的运动之间的相关性最终导致整个薄膜的集体弯曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号