首页> 外文期刊>Computer Modeling in Engineering & Sciences >Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors: Modeling, Optimization Using Particle Swarm Intelligence, and Fabrication
【24h】

Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors: Modeling, Optimization Using Particle Swarm Intelligence, and Fabrication

机译:舒张在肖特基屏障碳纳米管场效应晶体管中的余渣传导:建模,粒子群智能优化,以及制造

获取原文
获取原文并翻译 | 示例
           

摘要

A mathematical model and experimental analysis of the impact of oxide thickness on the ambipolar conduction in Schottky Barrier Carbon Nanotubes (CNTs) Field Effect Transistor (SB CNTFETs) is presented. Suppression of ambipolar conduction in SB CNTFETs is imperative in order to establish them as the future of IC technology. The ambipolar nature of SB CNTFETs leads to a great amount of leakage current. Employing a gate oxide dielectric of thickness, t(ox)similar to 50 nm suppresses the ambipolar behavior. In an SB CNTFET, it is the electric field at the source/drain contacts that control the conductance and the band bending length at the contacts is defined by t(ox). Therefore, tox is the prime parameter that influences the width of the Schottky barrier and the current in the subthreshold region. Due to the wide SB, there is a loss in on-current due to tunneling, but the current due to thermionic emission is increased by employing a high-kappa dielectric such as Zirconium dioxide (ZrO2). This work proposes an approach to suppress ambipolar behavior in SB CNTFETs without decreasing the on current. The thickness and dielectric constant of the gate oxide are optimized using the particle swarm optimization (PSO) algorithm to achieve suppression of ambipolar conduction without any loss in on-current. The proposed SB CNTFET was modeled using Verilog-A. Experimental demonstration of the suppression of ambipolar property is also presented. Two SB CNTFETs are fabricated using high-kappa dielectric such as ZrO2 with different thickness. A device with thin (similar to 5 nm) gate oxide and another device with thick (similar to 50 nm) gate oxide were fabricated. From the experimental results, it is observed that the device with the thin gate oxide exhibited ambipolar characteristics and the device with the thick gate oxide did not exhibit ambipolar characteristics. The increase in thickness, tox, ensures suppression of ambipolar behavior.
机译:介绍了氧化物厚度对肖特基屏障碳纳米管(CNTS)场效应晶体管(SB CNTFET)的氧化物厚度对氧化物厚度的影响的数学模型及实验分析。抑制SB CNTFET中的Ambipolar传导是必要的,以便将它们建立为IC技术的未来。 SB CNTFET的Ambipolar性质导致大量漏电流。采用栅极氧化物介质的厚度,与50nm类似的T(牛)抑制了amipolar行为。在SB CNTFET中,它是源/漏极触点处的电场,其控制触点处的电导和带弯曲长度由T(牛)限定。因此,TOX是影响肖特基势垒的宽度和亚阈值区域中的电流的主要参数。由于Sb宽,由于隧道引起的电流损失,但是通过采用高κ介电(如二氧化锆(ZrO2)而导致的电流发射引起的电流。这项工作提出了一种方法来抑制SB CNTFET中的Ambolar行为而不降低电流。使用粒子群优化(PSO)算法优化栅极氧化物的厚度和介电常数,以抑制舒适的传导而没有任何导通电流的损失。建议的SB CNTFET使用Verilog-A进行建模。还提出了抑制Ambipolar属性的实验证明。使用具有不同厚度的高κB介电如ZrO2制造两个SB CNTFET。制造具有薄(类似于5nm)氧化物的装置和另一种具有厚(类似于50nm)氧化物的装置。从实验结果中,观察到具有薄栅极氧化物的装置表现出粗栅极氧化物的Ambolar特性,并且具有厚栅极氧化物的装置没有表现出余渣特性。厚度的增加,TOX,确保抑制余辉行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号