首页> 外文期刊>Biomechanics and modeling in mechanobiology >Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale
【24h】

Effects of hydration and mineralization on the deformation mechanisms of collagen fibrils in bone at the nanoscale

机译:水化和矿化对纳米粒子骨骨筋变形机制的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Bone is a biomaterial with a structural load-bearing function. Investigating the biomechanics of bone at the nanoscale is important in application to tissue engineering, the development of bioinspired materials, and for characterizing factors such as age, trauma, or disease. At the nanoscale, bone is composed of fibrils that are primarily a composite of collagen, apatite crystals (mineral), and water. Though several studies have been done characterizing the mechanics of fibrils, the effects of variation and distribution of water and mineral content in fibril gap and overlap regions are unexplored. We investigate how the deformation mechanisms of collagen fibrils change as a function of mineral and water content. We use molecular dynamics to study the mechanics of collagen fibrils of 0wt%, 20wt%, and 40wt% mineralization and 0wt%, 2wt%, and 4wt% hydration under applied tensile stresses. We observe that the stress-strain behavior becomes more nonlinear with an increase in hydration, and an increase in mineral content for hydrated fibrils under tensile stress reduces the nonlinear stress versus strain behavior caused by hydration. The Young's modulus of both non-mineralized and mineralized fibrils decreases as the water content increases. As the water content increases, the gap/overlap ratio increases by approximately 40% for the non-mineralized cases and 16% for the highly mineralized cases. Our results indicate that variations in mineral and water content change the distribution of water in collagen fibrils and that the water distribution changes the deformation of gap and overlap regions under tensile loading.
机译:骨是一种具有结构承载功能的生物材料。调查纳米级骨骼的生物力学在应用于组织工程,生物透露材料的发展以及年龄,创伤或疾病等因素的表现中是重要的。在纳米级,骨骼由原纤维组成,其主要是胶原蛋白,磷灰石晶体(矿物)和水的复合物。虽然已经完成了几种研究的特征,但是原纤维的机制,但是,水和矿物质含量的变化和分布在原纤维间隙和重叠区域中的影响是未探斗的。我们调查胶原蛋白原纤维的变形机制如何随着矿物质和含水量的函数而变化。我们使用分子动力学在施加的拉伸应力下研究0wt%,20wt%,40wt%的矿化和0wt%,2wt%和4wt%水合的胶原蛋白原纤维的机制。我们观察到,随着水化的增加,应力 - 应变行为变得更加非线性,并且在拉伸应力下水合原纤维的矿物质含量的增加降低了水合引起的非线性应力与应变行为。随着水含量的增加,非矿化和矿化原纤维的杨氏模量降低。随着含水量的增加,间隙/重叠比对于非矿化病例的增加约40%,高度矿化病例增加了16%。我们的结果表明,矿物质和水含量的变化改变了胶原型原纤维中的水分布,水分布在拉伸负载下改变间隙和重叠区域的变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号