...
首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries
【24h】

Atomic layer deposition and first principles modeling of glassy Li3BO3–Li2CO3 electrolytes for solid-state Li metal batteries

机译:固态Li 3-Li2Co3电解质对固态Li金属电池的原子层沉积及第一个原理建模

获取原文
获取原文并翻译 | 示例
           

摘要

Thin-film lithium solid electrolytes can serve as passivation layers, interfacial coatings, and enable 3D solid-state batteries. Here we present an Atomic Layer Deposition (ALD) process for synthesis of amorphous lithium borate-carbonate (LBCO) films. These films exhibit ionic conductivities up to 2.2 × 10 ~(?6) S cm ~(?1) , six times greater than previously reported for any ALD solid electrolyte. First principles calculations trace the high conductivity to contributions from enhanced rotational motion of the carbonate and borate anions achieved by precise control of Li and C content by ALD. The high conductivity, coupled with a wide band gap and electrochemical stability window, leads to a total area specific resistance (ASR) of <5 Ω cm ~(2) for a 100 nm thick electrolyte and an ionic transference number >0.9999 from 0–6 volts vs. Li metal. The LBCO ALD solid electrolyte exhibits stability upon exposure to air, and in contact with both Li metal anodes and cathode materials. Thin-film full cells containing Li metal electrodes exhibit high coulombic efficiency for over 150 cycles with no capacity fading. These characteristics make glassy LBCO a promising new material for solid-state Li metal batteries.
机译:薄膜锂固体电解质可以用作钝化层,界面涂层,并使3D固态电池能够。在这里,我们提出了一种原子层沉积(ALD)方法,用于合成无定形硼酸锂 - 碳酸酯(LBCO)膜。这些膜表现出高达2.2×10〜(α6)Cm〜(α1)的离子电导率,比以前报告的任何ALD固体电解质六倍。第一个原理计算跟踪通过通过精确控制Li和C含量通过ALD获得的碳酸酯和硼酸盐阴离子的增强旋转运动的高导电率。高导电率,与宽带隙和电化学稳定性窗口相结合,导致100nm厚电解质的<5Ωcm〜(2)的总面积特异性电阻(ASR)和离子转移数> 0.9999来自0- 6伏尔斯金属。 LBCO ALD固体电解质在暴露于空气时表现出稳定性,并且与Li金属阳极和阴极材料接触。含有Li金属电极的薄膜全细胞表现出高的库仑效率超过150个循环,没有容量衰落。这些特性使玻璃LBCO成为固态LI金属电池的有希望的新材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号