首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >Magnetic Moment Controlling Desorption Temperature in Hydrogen Storage: A Case of Zirconium-Doped Graphene as a High Capacity Hydrogen Storage Medium
【24h】

Magnetic Moment Controlling Desorption Temperature in Hydrogen Storage: A Case of Zirconium-Doped Graphene as a High Capacity Hydrogen Storage Medium

机译:储氢中的磁矩控制解吸温度:锆掺杂石墨烯作为高容量储氢介质的情况

获取原文
获取原文并翻译 | 示例
           

摘要

For the first time, we predict through density functional theory that a single Zr atom attached on graphene surface can adsorb maximum of 9 H-2 molecules with average binding energy of 0.34 eV and average desorption temperature of 433 K leading to a wt % of 11, higher than the DoE's requirement of 6.S wt %.The dependency of desorption temperature (T-D) of H-2 molecule with the magnetic moment (mu) of the system was exclusively studied by formulating the empirical relation T-D = T-0 + a mu(b) (with T-0 = 399 K, a = 302.38 J(-1) T K and b = 0.5). For a system with a large magnetic moment, the charge transfer to the hydrogen molecule is higher, leading to higher desorption temperature (may be higher than prescribed limit for hydrogen storage by DoE). As the magnetic moment reduces, T-D comes into the desired window for fuel cell applications. It can be inferred from this study that controlling the magnetic character of the system through doping may be an effective way to bring T-D in to the desired window. We qualitatively and extensively demonstrate through the analysis of the partial density of states and Bader charge transfer the interaction mechanism of Zr on graphene surface and hydrogen storage capability of Zr decorated graphene. As we have used GGA exchange correlations (LDA over binds the system), checked the stability through ab initio MD simulations, computed the diffusion barrier for avoiding metal-metal clustering, and predicted that the hydrogen wt % of the system (11 wt %) comes higher than the DoE's requirement (6.5 wt %) with desorption temperature (433 K) and is very much suitable for fuel cell applications, we strongly believe that Zr-doped graphene can be tailored as a high capacity hydrogen storage device.
机译:我们首次预测密度函数理论,即附着在石墨烯表面上的单个Zr原子可以吸附9h-2分子的最大值,平均结合能量为0.34eV和433k的平均解吸温度导致11的Wt% ,高于DOE为6.swt%的要求。通过制定经验关系Td = T-0 +来专门研究H-2分子的解吸温度(Td)的依赖性(Td)。 a mu(b)(具有t-0 = 399 k,a = 302.38 j(-1)tk和b = 0.5)。对于具有大磁矩的系统,对氢分子的电荷转移较高,导致更高的解吸温度(可以高于DOE的氢储存的规定限制)。随着磁矩减少,T-D进入所需的窗口,用于燃料电池应用。从该研究中可以推断,通过掺杂控制系统的磁性可以是将T-D带入所需窗口的有效方法。我们通过分析Zr上的Zr Zr的相互作用机理和Zr装饰石墨烯的石墨烯表面和储氢能力的分析,通过分析Zr的分析和广泛的分析。随着我们使用的GGA交换相关性(LDA通过绑定系统),通过AB Initio MD模拟检查稳定性,计算扩散屏障,以避免金属金属聚类,并预测系统的氢气%(11wt%)具有解吸温度(433 k)的DOE要求(6.5重量%),非常适合燃料电池应用,我们强烈认为Zr掺杂的石墨烯可以作为高容量储氢装置定制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号