首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Probing the Reaction Mechanisms Involved in the Decomposition of Solid 1,3,5-Trinitro-1,3,5-triazinane by Energetic Electrons
【24h】

Probing the Reaction Mechanisms Involved in the Decomposition of Solid 1,3,5-Trinitro-1,3,5-triazinane by Energetic Electrons

机译:探测能量电子通过高能电子分解的反应机制。精力学电子的分解效应涉及固体1,3,5-三硝基-1,3,5-三嗪酮的分解

获取原文
获取原文并翻译 | 示例
           

摘要

The decomposition mechanisms of 1,3,5-trinitro-1,3,5-triazinane (RDX) have been explored over the past decades, but as of now, a complete picture on these pathways has not yet emerged, as evident from the discrepancies in proposed reaction mechanisms and the critical lack of products and intermediates observed experimentally. This study exploited a surface science machine to investigate the decomposition of solid-phase RDX by energetic electrons at a temperature of 5 K. The products formed during irradiation were monitored online and in situ via infrared and UV-vis spectroscopy, and products subliming in the temperature programmed desorption phase were probed with a reflectron time-of-flight mass spectrometer coupled with soft photoionization at 10.49 eV (ReTOF-MS-PI). Infrared spectroscopy revealed the formation of water (H2O), carbon dioxide (CO2), dinitrogen oxide (N2O), nitrogen monoxide (NO), formaldehyde (H2CO), nitrous acid (HONO), and nitrogen dioxide (NO2). ReTOF-MS-PI identified 38 cyclic and acyclic products arranged into, for example, dinitro, mononitro, mononitroso, nitro-nitroso, and amines species. Among these molecules, 21 products such as N-methylnitrous amide (CH4N2O), 1,3,5-triazinane (C3H9N3), and N-(aminomethyl)methanediamine (C2H9N3) were detected for the first time in laboratory experiments; mechanisms based on the gas phase and condensed phase calculations were exploited to rationalize the formation of the observed products. The present studies reveal a rich, unprecedented chemistry in the condensed phase decomposition of RDX, which is significantly more complex than the unimolecular gas phase decomposition of RDX, thus leading us closer to an understanding of the decomposition chemistry of nitramine-based explosives.
机译:在过去的几十年中探讨了1,3,5-三腈-1,3,5-三嗪烷(RDX)的分解机制,但截至目前,尚未出现这些途径的完整局面,从而从提出的反应机制和批判性缺乏产品和中间体的差异差异。本研究利用了一种表面科学机,在5K的温度下通过高能电子进行了活跃的电相的分解。在线和原位通过红外和UV-VIS光谱监测在辐射期间形成的产品,以及卸载产品探测温度编程的解吸相,通过在10.49eV(Retof-MS-PI)中耦合的飞行飞行时间质谱仪。红外光谱揭示了水(H2O),二氧化碳(CO 2),二氧化碳(N2O),氮一氧化物(NO),甲醛(H2CO),亚硝酸(HONO)和二氧化氮(NO2)的形成。 RetoF-MS-PI确定了38个循环和无环产品,例如,Dinitro,单尼尼罗,单硝基,硝基 - 硝基和胺类。在这些分子中,在实验室实验中首次检测到21种诸如N-甲基氮酰胺(CH 4 N 2 O),1,3,5-三嗪(C3H9N3)和N-(氨基甲基)甲基二胺(C2H9N3)的产物;基于气相和冷凝相计算的机制被利用以合理化观察到的产品的形成。目前的研究揭示了RDX的浓缩相分解中富有的前所未有的化学性,其比RDX的单分子气相分解显着更复杂,因此导致我们更接近对基于硝胺的炸药分解化学的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号