...
首页> 外文期刊>Medical Physics >Multienergy element‐resolved cone beam CT CT ( MEER MEER ‐ CBCT CBCT ) realized on a conventional CBCT CBCT platform
【24h】

Multienergy element‐resolved cone beam CT CT ( MEER MEER ‐ CBCT CBCT ) realized on a conventional CBCT CBCT platform

机译:在传统CBCT CBCT平台上实现了多energy元素分辨的锥形光束CT CT(Meer Meer - CBCT CBCT)

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Cone beam CT ( CBCT ) has been widely used in radiation therapy. However, its main application is still to acquire anatomical information for patient positioning. This study proposes a multienergy element‐resolved ( MEER ) CBCT framework that employs energy‐resolved data acquisition on a conventional CBCT platform and then simultaneously reconstructs images of x‐ray attenuation coefficients, electron density relative to water ( rED ), and elemental composition ( EC ) to support advanced applications. Methods The MEER ‐ CBCT framework is realized on a Varian TrueBeam CBCT platform using a kV p‐switching scanning scheme. A simultaneous image reconstruction and elemental decomposition model is formulated as an optimization problem. The objective function uses a least square term to enforce fidelity between x‐ray attenuation coefficients and projection measurements. Spatial regularization is introduced via sparsity under a tight wavelet‐frame transform. Consistency is imposed among rED , EC , and attenuation coefficients and inherently serves as a regularization term along the energy direction. The EC is further constrained by a sparse combination of EC s in a dictionary containing tissues commonly existing in humans. The optimization problem is solved by a novel alternating‐direction minimization scheme. The MEER ‐ CBCT framework was tested in a simulation study using an NCAT phantom and an experimental study using a Gammex phantom. Results MEER ‐ CBCT framework was successfully realized on a clinical Varian TrueBeam onboard CBCT platform with three energy channels of 80, 100, and 120? kV p. In the simulation study, the attenuation coefficient image achieved a structural similarity index of 0.98, compared to 0.61 for the image reconstructed by the conventional conjugate gradient least square ( CGLS ) algorithm, primarily because of reduction in artifacts. In the experimental study, the attenuation image obtained a contrast‐to‐noise ratio ≥60, much higher than that of CGLS results (~16) because of noise reduction. The median errors in rED and EC were 0.5% and 1.4% in the simulation study and 1.4% and 2.3% in the experimental study. Conclusion We proposed a novel MEER ‐ CBCT framework realized on a clinical CBCT platform. Simulation and experimental studies demonstrated its capability to simultaneously reconstruct x‐ray attenuation coefficient, rED , and EC images accurately.
机译:目的锥梁CT(CBCT)已被广泛用于放射疗法。但是,其主要应用仍然是为了获得患者定位的解剖信息。本研究提出了一种多元素元素解决(MEER)CBCT框架,其在传统CBCT平台上采用能量分辨的数据采集,然后同时重建X射线衰减系数的图像,相对于水(红色)和元素组成( EC)支持高级应用程序。方法使用KV P切换扫描方案在Varian TrueBeam CBCT平台上实现Meer - CBCT框架。同时图像重建和元素分解模型被制定为优化问题。目标函数使用最小二乘术语来强制在X射线衰减系数和投影测量之间进行保真度。空间正则化通过紧密小波框架变换下的稀疏引入。在红色,EC和衰减系数之间施加一致性,并且固有地用作沿能量方向的正则化术语。 EC进一步受到EC S中的稀疏组合在人类中常见的组织中的含有ZES中的稀疏组合。优化问题通过新颖的交替方向最小化方案解决。使用NCAT幻像和使用伽马射幻影的实验研究,在模拟研究中测试了Meer - CBCT框架。结果Meer - CBCT框架在临床Varian Trybeam船上CBCT平台上成功实现,其中三个能量通道为80,100和120? kv p。在仿真研究中,衰减系数图像实现了0.98的结构相似度指数,而由传统的共轭梯度最小二乘(CGLS)算法重建0.61,主要是因为减少了伪像。在实验研究中,由于降噪,衰减图像获得了对比度噪声比率≥60,远高于CGLS结果(〜16)。模拟研究中,红色和EC中的中位数误差为0.5%和1.4%,实验研究中的1.4%和2.3%。结论我们提出了一种在临床CBCT平台上实现的新型Meer - CBCT框架。模拟和实验研究表明其能力准确地重建X射线衰减系数,红色和EC图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号