...
首页> 外文期刊>The journal of physical chemistry, A. Molecules, spectroscopy, kinetics, environment, & general theory >Reanalysis of Rate Data for the Reaction CH3 + CH3 - C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation
【24h】

Reanalysis of Rate Data for the Reaction CH3 + CH3 - C2H6 Using Revised Cross Sections and a Linearized Second-Order Master Equation

机译:使用修正的横截面和线性二阶主方程对CH3 + CH3-> C2H6反应的速率数据进行重新分析

获取原文
获取原文并翻译 | 示例
           

摘要

Rate coefficients for the CH3 + CH3 reaction, over the temperature range 300-900 K, have been corrected for errors in the absorption coefficients used in the original publication (Slagle et al., J. Phys. Chem. 1988, 9, 2455-2462). These corrections necessitated the development of a detailed model of the (B) over tilde (2)A(1)' (3s) - (X) over tilde (2)A(2)'' transition in CH3 and its validation against both low temperature and high temperature experimental absorption cross sections. A master equation (ME) model was developed, using a local linearization of the second-order decay, which allows the use of standard matrix diagonalization methods for the,determination of the rate coefficients for CH3 + CH3. The ME model utilized inverse Laplace transformation to link the microcanonical rate constants for dissociation of C2H6 to the limiting high pressure rate coefficient for association, k(infinity)(T); it was Used to fit the experimental rate coefficients using the Levenberg- Marquardt algorithm to minimize chi(2) calculated from the differences between experimental and calculated rate coefficients. Parameters for both k(infinity)(T) and for energy transfer (down) (T) were varied and optimized in the fitting procedure, A wide range of experimental data were fitted, covering the temperature range 300-2000 K. A high pressure limit of k(infinity)(T) = 5.76 X 10(-11)(T/298 K)-(0.34) cm(3) molecule(-1) s(-1) was obtained, which agrees well with the best available theoretical expression.
机译:CH3 + CH3反应的速率系数在300-900 K的温度范围内,已针对原始出版物中使用的吸收系数的误差进行了校正(Slagle等人,J。Phys。Chem。1988,9,2455- 2462)。这些更正需要开发代号(2)A(1)'(3s)-(X)代号(2)A(2)''在CH3中过渡的详细模型并针对两者进行验证低温和高温实验吸收截面。利用二阶衰减的局部线性化,开发了一个主方程(ME)模型,该模型允许使用标准矩阵对角化方法来确定CH3 + CH3的速率系数。 ME模型利用拉普拉斯逆变换将C2H6离解的微规范速率常数与缔合的极限高压速率系数k(infinity)(T)联系起来。它使用Levenberg-Marquardt算法拟合实验速率系数,以最小化根据实验速率和计算的速率系数之间的差异计算的chi(2)。 k(无穷大)(T)和能量传递(下降)(T)的参数在拟合过程中进行了更改和优化,拟合了广泛的实验数据,涵盖了300-2000 K的温度范围。获得了k(无穷大)(T)= 5.76 X 10(-11)(T / 298 K)-(0.34)cm(3)分子(-1)s(-1)的高压极限最好的理论表达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号