首页> 外文学位 >Chemical Master Equations for Non-linear Stochastic Reaction Networks: Closure Schemes and Implications for Discovery in the Biological Sciences.
【24h】

Chemical Master Equations for Non-linear Stochastic Reaction Networks: Closure Schemes and Implications for Discovery in the Biological Sciences.

机译:非线性随机反应网络的化学主方程:封闭方案及其在生物科学中的发现意义。

获取原文
获取原文并翻译 | 示例

摘要

With the development of genome-wide sequencing, DNA synthesis technologies and the continued growth of supercomputing resources, biology has become a new focus of engineering research across the globe. Our ability to analyze gene function and develop novel synthetic biological systems has made engineered biological constructs a reality. Despite the advancement of computational resources and numerical methods biological research, however, remains the domain of experimental scientists. Novel simulation methods and theories for biological simulation are sorely needed in order to bridge the gap between the experimental and computational sides of biological engineering.;One major issue facing biological simulations is that these systems experience random fluctuations that can strongly influence and drive overarching function. The importance of these random fluctuations to the accuracy of the simulation requires the use of stochastic mathematics. Instead of describing and simulating a single deterministic trajectory through time for a chemical system, a probabilistic distribution of possible states must be determined. In such systems the master equation describes, in full detail, the underlying dynamics. In practice, however, such a solution for non-linear systems has been elusive for over 50 years. From a statistical perspective what is missing is a relationship between complex sets of statistics that has remained unresolved for decades called the moment closure problem. Solving this problem would allow for a new way to analyze and optimize stochastic simulations using deterministic numerical methods.;The work presented herein focuses on the full development of a numerical solution to the moment closure problem using maximum-entropy distributions. The intentions of my work were: (1) To develop an algorithm to quickly produce moment equations that fully describe the dynamics of the chemical master equation deterministically; (2) Develop a novel moment closure method using maximum-entropy optimization to solve the master equation; (3) Demonstrate the potential of this method for performing non-linear analysis, power spectral density determination and model reduction on stochastic systems. I will demonstrate in this initial study a new method for the simulation of biological systems (and other systems with a random nature) that is entirely separate from the methods that currently dominate stochastic biological simulation.
机译:随着全基因组测序,DNA合成技术的发展以及超级计算资源的持续增长,生物学已成为全球工程研究的新焦点。我们分析基因功能并开发新的合成生物学系统的能力使工程生物构建体成为现实。尽管计算资源和数值方法得到了发展,但是生物学研究仍然是实验科学家的领域。为了弥合生物工程的实验和计算方面之间的差距,迫切需要新颖的生物模拟方法和理论。生物模拟所面临的一个主要问题是这些系统会经历随机波动,这些波动会强烈影响和驱动总体功能。这些随机波动对仿真精度的重要性要求使用随机数学。代替描述和模拟化学系统随时间变化的单个确定性轨迹,必须确定可能状态的概率分布。在这样的系统中,主方程式详细描述了潜在的动力学。然而,实际上,这种用于非线性系统的解决方案已有50多年的历史了。从统计的角度来看,缺少的复杂统计数据之间的关系几十年来一直未解决,这被称为矩收敛问题。解决该问题将允许使用确定性数值方法来分析和优化随机模拟的新方法。本文提出的工作着重于使用最大熵分布对力矩闭合问题的数值解进行全面开发。我的工作目的是:(1)开发一种算法,以快速生成力矩方程,该矩方程可确定性地完全描述化学主方程的动力学; (2)开发一种利用最大熵优化求解主方程的矩矩闭合方法; (3)证明了这种方法在随机系统上进行非线性分析,功率谱密度确定和模型简化的潜力。我将在此初始研究中演示一种新的用于模拟生物系统(以及其他具有随机性质的系统)的方法,该方法与当前主导随机生物模拟的方法完全不同。

著录项

  • 作者

    Smadbeck, Patrick.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号