首页> 外文期刊>Applied mathematics and computation >Robust digital design of continuous-time nonlinear control systems using adaptive prediction and random-local-optimal NARMAX model
【24h】

Robust digital design of continuous-time nonlinear control systems using adaptive prediction and random-local-optimal NARMAX model

机译:基于自适应预测和随机局部最优NARMAX模型的连续时间非线性控制系统的稳健数字设计

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper the time-delay and uncertainty of continuous-time (CT) systems are considered, and it is suggested that input and output of a discrete-time (DT) Neural Plant Model (NPM) and recursive neural controller have scaling factors which limit the value zone of measured data from a system. Adapted scaling factors cause the tuned parameters to converge to obtain a robust control performance. However, the proposed Random-Local-Optimization (RLO) design for a model/controller uses off-line initialization to obtain a near global optimal model/controller. Other important issues are the considerations of cost, greater flexibility, and highly reliable digital products for these control problems. This issue of DT control design for CT plant is more difficult than that of CT control design for CT plant, because of the need to process the modeling error between the CT plant and DT model. The input-delay, uncertainty, and sampling distortion of a CT nonlinear power system need to be solved by developing a digital model-based controller. Here, this is called the DT tracking control design of CT systems (DT-CT). Therefore, the DT structure of the adaptive controller for the CT nonlinear power system should be designed as a kind of feed-forward-Recursive-Predictive controller (FRP). First, due to the problem of delays, a digital neural controller with feed-forward of the reference signal and a Nonlinear Auto-Regressive Moving Average eXogenous (NARMAX) neural model design is adopted to reduce this difficulty. The most important contribution is that the more reasonable and systematic two-stage control design, the CT nonlinear delayed system to be controlled is modeled using a NARMAX technique with the first-stage (off-line) method by the proposed global optimal network algorithm and second-stage (on-line) adaptive steps. Second, the dynamic response of the system is controlled by an adaptive NARMAX neural controller via a sensitivity function. A theorizing method is then proposed to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the BP method. Finally, the feed-forward input of reference signals helps the digital neural controller to improve the control performance, and the technique works to control the CT systems precisely.
机译:本文考虑了连续时间(CT)系统的时滞和不确定性,建议离散时间(DT)神经工厂模型(NPM)和递归神经控制器的输入和输出具有比例因子,限制系统中测量数据的值区域。调整后的比例因子使调整后的参数收敛,以获得鲁棒的控制性能。但是,为模型/控制器提出的随机局部优化(RLO)设计使用离线初始化来获得近似全局最优模型/控制器。其他重要问题是对这些控制问题的成本,更大的灵活性和高度可靠的数字产品的考虑。由于需要处理CT工厂和DT模型之间的建模误差,因此CT工厂的DT控制设计问题比CT工厂的CT控制设计更加困难。 CT非线性电力系统的输入延迟,不确定性和采样失真需要通过开发基于数字模型的控制器来解决。在这里,这称为CT系统的DT跟踪控制设计(DT-CT)。因此,应将CT非线性电力系统的自适应控制器的DT结构设计为一种前馈-递归-预测控制器(FRP)。首先,由于延迟的问题,采用了具有参考信号前馈和非线性自回归移动平均异质(NARMAX)神经模型设计的数字神经控制器,以减少这种困难。最重要的贡献是,更合理和系统的两阶段控制设计,通过建议的全局最优网络算法,使用NARMAX技术,采用第一阶段(离线)方法,使用NARMAX技术对要控制的CT非线性延迟系统进行建模,并第二阶段(在线)自适应步骤。其次,系统的动态响应由自适应NARMAX神经控制器通过灵敏度函数控制。然后提出了一种理论化的方法来代替灵敏度计算,这减少了BP方法的雅可比矩阵的计算。最后,参考信号的前馈输入帮助数字神经控制器改善控制性能,并且该技术可以精确地控制CT系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号