首页> 外文期刊>ACS applied materials & interfaces >Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays
【24h】

Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays

机译:高效的光电电化学水分解的增强的体相和界面电荷转移动力学:赤铁矿纳米棒阵列的情况

获取原文
获取原文并翻译 | 示例
           

摘要

Charge transport in the bulk and across the semiconductor/electrolyte interface is one of the major issues that limits photoelectrochemical (PEC) performance in hematite photoelectrodes. Efficient charge transport in the entire hematite is of great importance to obtaining high photo electrochemical properties. Herein, to reach this goal, we employed both TiO2 underlayer and overlayer deposition on hematite nanorod films, followed by a fast annealing treatment. The TiO2 underlayer and overlayer not only serve as dopant sources for carrier density increase but also reduce charge recombination at the fluorine-doped tin oxide (FTO)/hematite interface and accelerate charge transfer across the hematite/electrolyte interface. This synergistic doping and interface modifying effects give rise to an enhanced photoelectrochemical water oxidation performance of hematite nanorod arrays, generating an impressive photocurrent density of 1.49 mA cm(-2) at 1.23 V vs RHE. This is the first report on using both underlayer and overlayer modification with the same material to improve charge transport through the entire electron transport path in hematite, which provides a novel way to manipulate charge transfer across the semiconductor interface for a high-performance photoelectrode.
机译:主体中以及跨半导体/电解质界面的电荷传输是限制赤铁矿光电极中光电化学(PEC)性能的主要问题之一。在整个赤铁矿中有效的电荷传输对于获得高的光电化学性能非常重要。在这里,为了达到这个目标,我们在赤铁矿纳米棒薄膜上同时使用了TiO2底层和上层沉积,然后进行快速退火处理。 TiO2底层和上层不仅用作增加载流子密度的掺杂源,而且还减少了掺氟氧化锡(FTO)/赤铁矿界面处的电荷复合,并加速了跨赤铁矿/电解质界面的电荷转移。这种协同的掺杂和界面修饰作用可提高赤铁矿纳米棒阵列的光电化学水氧化性能,在相对于RHE的1.23 V电压下产生1.49 mA cm(-2)的光电流密度。这是有关使用同一材料进行下层修饰和上层修饰两者以改善在赤铁矿中整个电子传输路径中的电荷传输的第一份报告,这提供了一种新颖的方式来操纵跨半导体界面的电荷传输,从而实现了高性能的光电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号