首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Attenuation of acoustic waves in glacial ice and salt domes
【24h】

Attenuation of acoustic waves in glacial ice and salt domes

机译:冰川冰和盐穹顶中的声波衰减

获取原文
获取原文并翻译 | 示例
           

摘要

Two classes of natural solid media, glacial ice and salt domes, are under consideration as media in which to deploy instruments for detection of neutrinos with energy ≥1018 eV. Though insensitive to 1011 to 1016 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because owing to the very long attenuation lengths of radio and acoustic waves produced by interactions of such neutrinos in ice and salt, detection modules can be spaced at horizontal distances ~1 km, in contrast to the 0.12 km distances between strings of IceCube modules. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size ~0.2 cm at depths ≤600 m, scattering lengths are calculated to be 2000 and 25 km at frequencies 10 and 30 kHz, respectively; for grain size ~0.4 cm at 1500 m (the maximum depth to be instrumented acoustically), scattering lengths are calculated to be 250 and 3 km. These are within the range of frequencies where most of the energy of the acoustic wave is concentrated. The absorption length is calculated to be 9 ± 3 km at all frequencies above ~100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 and 1.4 km at 10 and 30 kHz, and absorption lengths are calculated to be 3 × 104 and 3300 km at 10 and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor. Both media would be suitable for detection of acoustic waves from ultrahigh-energy neutrino interactions.
机译:正在考虑使用两类天然固体介质,冰川冰和盐穹顶,作为部署能量≥1018eV的中微子的仪器。尽管对设计了利用光学Cherenkov辐射探测器的观测站(例如AMANDA和IceCube)的1011至1016 eV中微子不敏感,但无线电和声学方法适用于搜索能量> 1017 eV的极低通量的中微子。这是因为由于中微子在冰和盐中的相互作用所产生的无线电波和声波的衰减长度非常长,因此检测模块的水平距离约为1 km,而IceCube模块的串之间的距离为0.12 km 。在本文中,我计算了在冰冰和盐穹顶中声波的吸收和散射系数随频率和晶粒尺寸的变化,并表明对实验室样品以及在冰冰和盐穹顶中进行的实验测量与理论一致。对于深度≤600m时粒度为〜0.2 cm的南极冰,在10 kHz和30 kHz频率下,散射长度分别为2000 km和25 km;对于在1500 m处(要进行声学测量的最大深度)的〜0.4 cm的晶粒尺寸,散射长度经计算为250和3 km。这些在大部分声波能量集中的频率范围内。计算得出,在〜100 Hz以上的所有频率下,吸收长度为9±3 km。对于粒径为0.75 cm的NaCl(岩盐),在10和30 kHz时,散射长度计算为120和1.4 km,在10和30 kHz时,吸收长度计算为3×104和3300 km。现有的测量与理论一致。对于冰来说,吸收是限制因素。对于盐,散射是限制因素。两种介质都适用于检测超高能中微子相互作用产生的声波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号