首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Mantle flow models with core-mantle boundary constraints and chemical heterogeneities in the lowermost mantle
【24h】

Mantle flow models with core-mantle boundary constraints and chemical heterogeneities in the lowermost mantle

机译:最下部地幔中具有核-地幔边界约束和化学非均质性的地幔流模型

获取原文
获取原文并翻译 | 示例
           

摘要

Decorrelation between s-wave and bulk sound velocities in the lowermost mantle and explicit density models based on seismic tomography give evidence for non-thermal lateral density variations in the lowermost mantle. Here we implement such variations in a numerical model of mantle flow driven by density anomalies which are derived from seismic tomography. In the lowermost ≈300 km, we either use both s-wave and bulk sound velocities to infer both thermal mantle density anomalies and non-thermal heterogeneities, or we assume that regions with s-wave speed anomalies below ?1% have an additional non-thermal density anomaly. We predefine the shape of the viscosity profile in the upper mantle, transition zone and lower mantle, but absolute values of viscosity in the lithosphere, upper mantle, transition zone and lower mantle are free parameters. We use geoid, radial heat flux profile, viscosity “Haskell” average, core-mantle boundary (CMB) excess ellipticity, as well as (optionally) long-wavelength root mean square (RMS) CMB topography and reliable point estimates of CMB topography as constraints to optimize the model in parameter space in a least squares sense. We are able to obtain a reasonable fit to all data constraints. Computed RMS CMB topography is predominantly long-wavelength and with 1–1.5 km RMS amplitude somewhat larger than the long-wavelength component inferred from seismology. Geoid variance reduction is 75 to 83% in our preferred parameter range. Best fit models have a viscosity maximum close to 1023 Pas about 600 km above the CMB, and a viscosity drop near the base of the mantle, corresponding to a thermal boundary layer about 300 km thick with temperature increase from ≈2500 to 3500–4000 K.
机译:最下层地幔中s波与体声速度之间的去相关性以及基于地震层析成像的显式密度模型为最下层地幔中非热横向密度变化提供了证据。在这里,我们在由地震层析成像法得出的密度异常驱动的地幔流动数值模型中实现了这种变化。在最低的≈300km中,我们要么使用s波速度,要么使用体声速度来推断热幔密度异常和非热非均质性,或者我们假设s波速度异常低于1%的区域还有一个额外的非-热密度异常。我们预先定义了上地幔,过渡带和下地幔的粘度曲线形状,但是岩石圈,上地幔,过渡带和下地幔的粘度绝对值是自由参数。我们使用大地水准面,径向热通量分布,平均粘度“ Haskell”,芯幔边界(CMB)的超椭圆率,以及(可选)长波长均方根(RMS)CMB地形和CMB地形的可靠点估计约束以最小二乘意义优化参数空间中的模型。我们能够合理地适应所有数据约束。计算的RMS CMB地形主要是长波,并且RMS振幅为1-1.5 km,比地震学推断出的长波分量要大一些。在我们的首选参数范围内,大地水准面变化减少了75%至83%。最佳拟合模型的最大粘度在CMB上方约600 km处最大接近1023 Pas,并且在地幔底部附近粘度下降,对应于约300 km厚的热边界层,温度从≈2500升高到3500–4000 K 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号