首页> 外文期刊>Journal of Fluid Mechanics >Turbulence and internal waves in stably-stratified channel flow with temperature-dependent fluid properties
【24h】

Turbulence and internal waves in stably-stratified channel flow with temperature-dependent fluid properties

机译:稳定分层通道中的湍流和内波具有随温度变化的流体特性

获取原文
获取原文并翻译 | 示例
           

摘要

Direct numerical simulation (DNS) is used to study the behaviour of stably-stratified turbulent channel flow with temperature-dependent fluid properties: specifically, viscosity (μ) and thermal expansion coefficient (β). The governing equations are solved using a pseudo-spectral method for the case of turbulent water flow in a channel. A systematic campaign of simulations is performed in the shear Richardson number parameter space (Ri_τ = Gr/Re τ, where Gr is the Grashof number and Re_τ the shear Reynolds number), imposing constant-temperature boundary conditions. Variations of Ri τ are obtained by changing Re_τ and keeping Gr constant. Independently of the value of Ri_τ, all cases exhibit an initial transition from turbulent to laminar flow. A return transition to turbulence is observed only if Ri τ is below a threshold value (which depends also on the flow Reynolds number). After the transient evolution of the flow, a statistically-stationary condition occurs, in which active turbulence and internal gravity waves (IGW) coexist. In this condition, the transport efficiency of momentum and heat is reduced considerably compared to the condition of non-stratified turbulence. The crucial role of temperature- dependent viscosity and thermal expansion coefficient is directly demonstrated. The most striking feature produced by the temperature dependence of viscosity is flow relaminarization in the cold side of the channel (where viscosity is higher). The opposite behaviour, with flow relaminarization occurring in the hot side of the channel, is observed when a temperature-dependent thermal expansion coefficient is considered. We observe qualitative and quantitative modifications of structure and wall-normal position of internal waves compared to previous results obtained for uniform or quasi-uniform fluid properties. From the trend we observe in the investigated low-Reynolds-number range, we can hypothesize that, whereas the effects of temperature-dependent viscosity may be masked at higher Reynolds number, the effects of temperature-dependent thermal expansion coefficient will persist.
机译:直接数值模拟(DNS)用于研究具有温度相关流体特性的稳定分层湍流通道的行为:具体来说是粘度(μ)和热膨胀系数(β)。对于通道中湍流的情况,使用伪谱法求解控制方程。在剪切的理查森数参数空间(Ri_τ= Gr / Reτ,其中Gr是Grashof数,Re_τ是剪切雷诺数)中进行系统的模拟运动,并施加了恒定的边界条件。 Riτ的变化是通过改变Re_τ并保持Gr恒定来获得的。与Ri_τ的值无关,所有情况都显示出从湍流到层流的初始过渡。仅当Riτ低于阈值(也取决于流量雷诺数)时,才观察到湍流的返回过渡。在流动的瞬态演变之后,出现了统计静止状态,在该状态下主动湍流和内部重力波(IGW)共存。在这种情况下,与非分层湍流相比,动量和热量的传输效率大大降低。直接证明了温度依赖性粘度和热膨胀系数的关键作用。粘度与温度的关系所产生的最显着特征是通道冷侧(粘度较高)的流动再分层。当考虑温度相关的热膨胀系数时,会观察到相反的行为,即在通道的热侧发生流再分层。与先前获得的均匀或准均匀流体特性的结果相比,我们观察到内部波的结构和壁法线位置的定性和定量修改。从在研究的低雷诺数范围内观察到的趋势,我们可以假设,尽管在较高的雷诺数下温度依赖性粘度的影响可能被掩盖,但温度依赖性热膨胀系数的影响将持续存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号