...
首页> 外文期刊>Journal of Fluid Mechanics >On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions
【24h】

On Lagrangian and vortex-surface fields for flows with Taylor-Green and Kida-Pelz initial conditions

机译:具有泰勒格林和吉达佩尔兹初始条件的流动的拉格朗日和涡旋表面场

获取原文
获取原文并翻译 | 示例
           

摘要

For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields ?(x, y, z, t = 0) for Taylor-Green and Kida-Pelz velocity fields, which, at t = 0, satisfyω = 0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces = C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions.
机译:对于具有保守体力的严格无粘性正压流,Helmholtz涡度定理表明,在t = 0时,作为涡旋表面的材料或拉格朗日表面在t> 0时仍保持不变。 Taylor-Green和Kida-Pelz速度场的场?(x,y,z,t = 0),在t = 0时满足ω=0。我们将这种场称为涡旋表面场。然后,对于某些常数C,等值面= C定义了涡旋面。结果表明,在给定涡度的情况下,我们对涡旋表面场的定义允许非唯一性,目前这可以通过优化方法在数值上解决。此外,讨论了旋涡面场与经典克列布表示之间的关系,该关系具有零螺旋度。然后,获得了描述粘性和不可压缩流动的涡旋面场演化的方程。讨论了将涡旋面场和拉格朗日场的演化分开的唯一性和区别。通过在微粘性流中作为拉格朗日场进行跟踪,我们表明,最初为涡旋表面的拉格朗日表面的良好定义的演化可以很好地近似于在涡旋重新连接之前的稍后时间的涡旋表面。在这种拉格朗日场的演化过程中,我们观察到最初的斑点状涡旋表面逐渐拉伸为片状形状,从而使相邻部分彼此靠近,随后在界面附近展开结构,这揭示了更多的动力学信息。涡度等值面。演化中的非局部几何由两个不同的几何属性量化。在拉格朗日结构中发现了卷起的局部形状,这些形状最初是接近涡旋重新连接时的涡旋表面。假设这与非常高涡度区域的形成有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号