首页> 外文期刊>Journal of Fluid Mechanics >Anomalous pressure drop behaviour of mixed kinematics flows of viscoelastic polymer solutions: a multiscale simulation approach
【24h】

Anomalous pressure drop behaviour of mixed kinematics flows of viscoelastic polymer solutions: a multiscale simulation approach

机译:粘弹性聚合物溶液混合运动学的异常压降行为:一种多尺度模拟方法

获取原文
获取原文并翻译 | 示例
           

摘要

A long-standing unresolved problem in non-Newtonian-fluid mechanics, namely, the relationship between friction drag and flow rate in inertialess complex kinematics flows of dilute polymeric solutions is investigated via self-consistent multiscale flow simulations. Specifically, flow of a highly elastic dilute polymeric solution, described by first principles micromechanical models, through a 4:1:4 axisymmetric contraction and expansion geometry is examined utilizing Our recently developed highly efficient multiscale flow Simulation algorithm (Koppol, Sureshkumar & Khomami, J. Non-Newtonian Fluid Mech., vol. 141, 2007, p. 180). Comparison with experimental measurements (Rothstein & McKinley, J. Non-Newtonian Fluid Mech., vol. 86, 1999, p.61) shows that the pressure drop evolution as a function of flow rate can be accurately predicted when the chain dynamics is described by multi-segment bead-spring micromechanical models that closely capture the transient extensional viscosity of the experimental fluid. Specifically, for the first time the experimentally observed doubling of the dimensionless excess pressure drop at intermediate flow rates is predicted. Moreover, based on an energy dissipation analysis it has been shown that the variation of the excess pressure drop with the flow rate is controlled by the flow-microstructure coupling in the extensional flow dominated region of the flow. Finally, the influence of the macromolecular chain extensibility on the vortex dynamics, i.e. growth of the upstream corner vortex at low chain extensibility or the shrinkage of the upstream corner vortex coupled with the formation of a lip vortex that eventually merges with the upstream corner vortex at high chain extensibility is elucidated.
机译:通过自洽多尺度流模拟研究了非牛顿流体力学中一个长期未解决的问题,即稀聚合物溶液在无惯性复杂运动学中的摩擦阻力与流速之间的关系。具体而言,利用我们最近开发的高效多尺度流模拟算法(Koppol,Sureshkumar&Khomami,J),通过第一原理微力学模型描述的高弹性稀聚合物溶液通过4:1:4轴对称收缩和膨胀几何形状的流动进行了研究。 (非牛顿流体力学,第141卷,2007年,第180页)。与实验测量值的比较(Rothstein&McKinley,J。Non-Newtonian Fluid Mech。,第86卷,1999年,第61页)表明,当描述链动力学时,可以准确地预测压降随流量的变化。通过多段珠状弹簧微机械模型来精确捕获实验流体的瞬态拉伸粘度。具体而言,首次预测了实验观察到的在中等流速下无量纲的过大压降的翻倍。而且,基于能量耗散分析,已经表明,过大的压降随流量的变化是通过在流动的扩展流动主导区域中的流动-微结构耦合来控制的。最后,大分子链可扩展性对涡旋动力学的影响,即上游角涡在低链可扩展性下的增长或上游角涡的收缩与形成最终与上游角涡合并的唇形涡流相结合。阐明了高链延伸性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号