...
首页> 外文期刊>Journal of Applied Meteorology and Climatology >A Method for Calculating the Height of Overshooting Convective Cloud Tops Using Satellite-Based IR Imager and CloudSat Cloud Profiling Radar Observations
【24h】

A Method for Calculating the Height of Overshooting Convective Cloud Tops Using Satellite-Based IR Imager and CloudSat Cloud Profiling Radar Observations

机译:利用基于卫星的红外成像仪和CloudSat云剖析雷达观测资料计算对流云顶超调高度的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Assigning accurate heights to convective cloud tops that penetrate into the upper troposphere-lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, "overshooting tops" (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, -7.34 K km(-1), for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within +/- 500 m of the coincident CPR-estimated heights.
机译:使用红外(IR)卫星图像为穿透到对流层-低平流层上部(UTLS)区域的对流云顶分配准确的高度对于卫星研究界来说是一个尚未解决的问题。通常,通过将观测到的红外亮度温度(BT)与并置的生丁声子或数值天气预报(NWP)轮廓进行匹配,可以完成对厚云层顶部的高度分配。但是,“过顶”(OTs)通常比相关配置文件中的任何垂直水准要低(以BT为单位),因此使用此标准方法无法确定这些顶的高度。这里描述了一种新方法,该方法使用云顶上升到UTLS区域时的特征性温度下降率来计算对流驱动OT的高度。使用CloudSat云剖析雷达(CPR)直接观察到的108个MODIS识别的OT事件,可以定义OT与砧区之间的MODIS派生的亮度温度差(BTD)。此BTD与这两个区域之间的CPR和NWP派生的高度差结合起来,确定了108个事件的平均失败率-7.34 K km(-1)。砧座高度通常是众所周知的,并且使用自动OT检测算法来得出BTD,因此流逝率允许为任何检测到的OT计算高度。进行了MODIS和地球静止成像仪IR BT对OT和铁砧区域的经验拟合,以使该方法能够应用于空间分辨率较粗的地球静止数据。验证表明,MODIS(对地静止)OT高度的〜75%(65%)在同时CPR估计的高度的+/- 500 m之内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号