...
首页> 外文期刊>Journal of Biomechanics >Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.
【24h】

Intralimb compensation strategy depends on the nature of joint perturbation in human hopping.

机译:肢内补偿策略取决于人类跳跃中关节扰动的性质。

获取原文
获取原文并翻译 | 示例
           

摘要

Due to the well-described spring-mass dynamics of bouncing gaits, human hopping is a tractable model for elucidating basic neuromuscular compensation principles. We tested whether subjects would employ a multi-joint or single-joint response to stabilize leg stiffness while wearing a spring-loaded ankle-foot orthosis (AFO) that applied localized resistive and assistive torques to the ankle. We analyzed kinematics and kinetics data from nine subjects hopping in place on one leg, at three frequencies (2.2, 2.4, and 2.8Hz) and three orthosis conditions (freely articulating AFO, AFO with plantarflexion resistance, and AFO with plantarflexion assistance). Leg stiffness was invariant across AFO conditions, however, compensation strategy depended upon the nature of the applied load. Biological ankle stiffness increased in response to a resistive load at twice the rate that it decreased with an assitive load. Ankle adjustments alone fully compensated for an assistive load with no net change in combined (biological plus applied) total ankle stiffness (p or =0.133). In contrast, a resistive load resulted in a 7.4-9.0% increase in total ankle stiffness across frequencies and a concomitant 10-15% increase in knee joint stiffness at each frequency (p or =0.037). The increased knee joint stiffness in response to resistive ankle load allowed subjects to maintain a more flexed knee at mid-stance, which attenuated the effect of the increased total ankle joint stiffness to preserve leg stiffness and whole limb biomechanical performance. Our findings suggest humans maintain invariant leg stiffness in bouncing gaits through different intralimb compensation strategies that are specific to the nature of the joint loading.
机译:由于跳动的步态具有良好的弹簧质量动力学,人类跳跃是阐明基本神经肌肉补偿原理的易处理模型。我们测试了受试者在穿戴弹簧加载的踝足矫形器(AFO)时是否会采用多关节或单关节反应来稳定腿部僵硬,该方法将局部阻力和辅助扭矩施加到脚踝。我们分析了九名受试者在一条腿上以三种频率(2.2、2.4和2.8Hz)和三种矫形条件(自由关节AFO,具有with屈阻力的AFO和具有and屈辅助的AFO)在一条腿上跳跃的运动学和动力学数据。在AFO条件下,腿部刚度不变,但是,补偿策略取决于所施加载荷的性质。生物踝关节刚度响应于阻力负荷而增加,其速率是其在惯性负荷下下降的两倍。单独的踝关节调节可以完全补偿辅助负荷,而总的踝关节僵硬度(p≥0.133)没有净变化。相反,在每个频率下,电阻性负载导致总脚踝刚度增加7.4-9.0%,在每个频率下膝关节刚度随之增加10-15%(p <或= 0.037)。响应于抵抗性踝关节负荷而增加的膝关节刚度允许受试者在中位时保持膝盖更加弯曲,从而减弱了增加的总踝关节刚度以保持腿部刚度和整个肢体生物力学性能的效果。我们的研究结果表明,人类可以通过不同的肢体内补偿策略来保持步态弹跳不变,而这些补偿是针对关节负荷性质的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号