...
首页> 外文期刊>The Journal of Physiology >An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation
【24h】

An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation

机译:一种更新的兔窦房动作电位计算模型以研究心率调节机制

获取原文
获取原文并翻译 | 示例
           

摘要

The cellular basis of cardiac pacemaking is still debated. Reliable computational models of the sinoatrial node (SAN) action potential (AP) may help gain a deeper understanding of the phenomenon. Recently, novel models incorporating detailed Ca 2+-handling dynamics have been proposed, but they fail to reproduce a number of experimental data, and more specifically effects of 'funny' (I f) current modifications. We therefore developed a SAN AP model, based on available experimental data, in an attempt to reproduce physiological and pharmacological heart rate modulation. Cell compartmentalization and intracellular Ca 2+-handling mechanisms were formulated as in the Maltsev-Lakatta model, focusing on Ca 2+-cycling processes. Membrane current equations were revised on the basis of published experimental data. Modifications of the formulation of currents/pumps/exchangers to simulate I f blockers, autonomic modulators and Ca 2+-dependent mechanisms (ivabradine, caesium, acetylcholine, isoprenaline, BAPTA) were derived from experimental data. The model generates AP waveforms typical of rabbit SAN cells, whose parameters fall within the experimental ranges: 352 ms cycle length, 80 mV AP amplitude, -58 mV maximum diastolic potential (MDP), 108 ms APD 50, and 7.1 V s -1 maximum upstroke velocity. Rate modulation by I f-blocking drugs agrees with experimental findings: 20% and 22% caesium-induced (5 mm) and ivabradine-induced (3 μm) rate reductions, respectively, due to changes in diastolic depolarization (DD) slope, with no changes in either MDP or take-off potential (TOP). The model consistently reproduces the effects of autonomic modulation: 20% rate decrease with 10 nm acetylcholine and 28% increase with 1 μm isoprenaline, again entirely due to increase in the DD slope, with no changes in either MDP or TOP. Model testing of BAPTA effects showed slowing of rate, -26%, without cessation of beating. Our up-to-date model describes satisfactorily experimental data concerning autonomic stimulation, funny-channel blockade and inhibition of the Ca 2+-related system by BAPTA, making it a useful tool for further investigation. Simulation results suggest that a detailed description of the intracellular Ca 2+ fluxes is fully compatible with the observation that I f is a major component of pacemaking and rate modulation.
机译:心脏起搏的细胞基础仍存在争议。窦房结(SAN)动作电位(AP)的可靠计算模型可能有助于加深对该现象的了解。最近,已经提出了结合详细的Ca 2+处理动力学的新颖模型,但是它们无法重现许多实验数据,更具体地讲,是“有趣的”(I f)当前修改的影响。因此,我们基于可用的实验数据开发了SAN AP模型,以尝试重现生理和药理心率调节。如在Maltsev-Lakatta模型中一样,阐述了细胞区室化和细胞内Ca 2+处理机制,重点是Ca 2+循环过程。在公开的实验数据的基础上修订了膜电流方程。电流/泵/交换剂的配方修改可模拟I f阻滞剂,植物神经调节剂和Ca 2+依赖性机制(伊伐布雷定,铯,乙酰胆碱,异戊二烯,BAPTA),来自实验数据。该模型生成典型的兔SAN细胞的AP波形,其参数处于以下实验范围内:352 ms周期长度,80 mV AP幅度,-58 mV最大舒张电位(MDP),108 ms APD 50和7.1 V s -1最大上冲程速度。阻断if的药物对速率的调节与实验结果一致:由于舒张去极化(DD)斜率的变化,铯引起的(5 mm)和伊伐布雷定引起的(3μm)速率降低分别为20%和22%。 MDP或起飞电位(TOP)均无变化。该模型始终如一地重现自主调节的效果:10 nm乙酰胆碱降低20%的速率,而异丙肾上腺素1μm降低28%的速率,这完全是由于DD斜率的增加,而MDP或TOP均未改变。对BAPTA效果的模型测试表明,速率降低了-26%,没有停止跳动。我们的最新模型令人满意地描述了有关BAPTA的自主神经刺激,有趣通道阻滞和Ca 2+相关系统抑制的实验数据,使其成为进一步研究的有用工具。模拟结果表明,细胞内Ca 2+通量的详细描述与I f是起搏和速率调节的主要成分的观察结果完全兼容。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号