首页> 外文期刊>Biomechanics and modeling in mechanobiology >Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion
【24h】

Cellular contractility and substrate elasticity: a numerical investigation of the actin cytoskeleton and cell adhesion

机译:细胞收缩性和基质弹性:肌动蛋白细胞骨架和细胞粘附的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Numerous experimental studies have established that cells can sense the stiffness of underlying substrates and have quantified the effect of substrate stiffness on stress fibre formation, focal adhesion area, cell traction, and cell shape. In order to capture such behaviour, the current study couples a mixed mode thermodynamic and mechanical framework that predicts focal adhesion formation and growth with a material model that predicts stress fibre formation, contractility, and dissociation in a fully 3D implementation. Simulations reveal that SF contractility plays a critical role in the substrate-dependent response of cells. Compliant substrates do not provide sufficient tension for stress fibre persistence, causing dissociation of stress fibres and lower focal adhesion formation. In contrast, cells on stiffer substrates are predicted to contain large amounts of dominant stress fibres. Different levels of cellular contractility representative of different cell phenotypes are found to alter the range of substrate stiffness that cause the most significant changes in stress fibre and focal adhesion formation. Furthermore, stress fibre and focal adhesion formation evolve as a cell spreads on a substrate and leading to the formation of bands of fibres leading from the cell periphery over the nucleus. Inhibiting the formation of FAs during cell spreading is found to limit stress fibre formation. The predictions of this mutually dependent materialinterface framework are strongly supported by experimental observations of cells adhered to elastic substrates and offer insight into the inter-dependent biomechanical processes regulating stress fibre and focal adhesion formation.
机译:大量的实验研究已经证明,细胞可以感知下面的基质的刚度,并量化了基质刚度对应力纤维形成,粘着区,细胞附着力和细胞形状的影响。为了捕获这种行为,当前的研究将混合模式的热力学和机械框架(可以预测粘着斑的形成和增长)与材料模型(可以在完整的3D实现中预测应力纤维的形成,收缩性和解离)相结合。模拟表明SF收缩性在细胞的底物依赖性反应中起关键作用。顺应性的基材不能为应力纤维的持久性提供足够的张力,从而导致应力纤维的离解和较低的粘着力形成。相反,预计在较硬的基材上的单元将包含大量的主应力纤维。发现代表不同细胞表型的不同水平的细胞收缩力改变了底物刚度的范围,所述底物刚度的范围引起应力纤维和粘着斑形成的最显着变化。此外,应力纤维和粘着斑的形成随着细胞在基底上的扩散而发展,并导致形成从细胞核周围的细胞外围引出的纤维带。发现在细胞扩散期间抑制FA的形成限制了应力纤维的形成。对相互依存的材料界面框架的预测得到了粘附在弹性基质上的细胞的实验观察的有力支持,并提供了对调节应力纤维和粘着斑形成的相互依存的生物力学过程的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号