...
首页> 外文期刊>The New Phytologist >Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean
【24h】

Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean

机译:苯丙氨酸氨裂合酶和异高辛酸合酶活性之间的协同作用有助于大豆中水杨酸的生物合成

获取原文
获取原文并翻译 | 示例
           

摘要

Salicylic acid (SA), an essential regulator of plant defense, is derived from chorismate via either the phenylalanine ammonia lyase (PAL) or the isochorismate synthase (ICS) catalyzed steps. The ICS pathway is thought to be the primary contributor of defense-related SA, at least in Arabidopsis. We investigated the relative contributions of PAL and ICS to defense-related SA accumulation in soybean (Glycine max). Soybean plants silenced for five PAL isoforms or two ICS isoforms were analyzed for SA concentrations and SA-derived defense responses to the hemibiotrophic pathogens Pseudomonas syringae and Phytophthora sojae. We show that, unlike in Arabidopsis, PAL and ICS pathways are equally important for pathogen-induced SA biosynthesis in soybean. Knock-down of either pathway shuts down SA biosynthesis and abrogates pathogen resistance. Moreover, unlike in Arabidopsis, pathogen infection is associated with the suppression of ICS gene expression. Pathogen-induced biosynthesis of SA via the PAL pathway correlates inversely with phenylalanine concentrations. Although infections with either virulent or avirulent strains of the pathogens increase SA concentrations, resistance protein-mediated response to avirulent P.sojae strains may function in an SA-independent manner. These results show that PAL- and ICS-catalyzed reactions function cooperatively in soybean defense and highlight the importance of PAL in pathogen-induced SA biosynthesis.
机译:水杨酸(SA)是植物防御系统的重要调节剂,可通过苯丙氨酸氨裂合酶(PAL)或等渗硫酸合酶(ICS)催化步骤从分支酸盐中衍生而来。 ICS途径被认为是防御相关SA的主要贡献者,至少在拟南芥中。我们调查了PAL和ICS对与防御相关的SA在大豆中积累的相对贡献(Glycine max)。分析了沉默了五个PAL异构体或两个ICS异构体的大豆植物的SA浓度以及SA对半生营养性病原体丁香假单胞菌和大豆疫霉的防御反应。我们证明,与拟南芥不同,PAL和ICS途径对于大豆中病原体诱导的SA生物合成同样重要。任一途径的抑制均可关闭SA的生物合成,并消除病原体抗性。而且,与拟南芥不同,病原体感染与ICS基因表达的抑制有关。病原体通过PAL途径诱导的SA的生物合成与苯丙氨酸浓度成反比。尽管用病原体的毒力或无毒力的菌株感染均会增加SA浓度,但耐药蛋白介导的对无毒P.sojae菌株的反应可能以SA无关的方式发挥作用。这些结果表明,PAL和ICS催化的反应在大豆防御中协同起作用,并突出了PAL在病原体诱导的SA生物合成中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号