...
首页> 外文期刊>The Journal of Chemical Physics >Collision induced desorption and dissociation of O-2 chemisorbed on Ag(001)
【24h】

Collision induced desorption and dissociation of O-2 chemisorbed on Ag(001)

机译:碰撞诱导Ag(001)上化学吸附的O-2解吸解离

获取原文
获取原文并翻译 | 示例
           

摘要

We have investigated desorption and dissociation of O-2 chemisorbed on Ag(001) induced by collision with hyperthermal Xe and Ar atoms by high resolution electron energy loss spectroscopy and supersonic molecular beam technique. The cross section for both processes increases rapidly both as a function of angle of incidence and of total impact energy of the inert gas atom. While the increase with energy is expected, the increase with the angle is somewhat surprising arid is sensibly larger than observed for previously investigated systems. The cross section for desorption decreases moreover with coverage. In the limit of high impact energy and high coverage its value is always larger than the one for dissociation. The branching ratio between the two processes depends thereby on energy and angle of incidence of the inert gas atom. Atomic oxygen is not removed under any impact condition, because of its larger binding energy. In order to explain the experimental results, molecular dynamics simulations have been performed using a simple model including multiple scattering, We find that the angular dependence of the cross section is determined by surface corrugation and by multiple scattering which suppresses desorption at normal incidence while the energetic threshold is determined by energy loss to the substrate. (C) 1998 American Institute of Physics. [References: 30]
机译:我们已经通过高分辨率电子能量损失谱和超音速分子束技术研究了与高温Xe和Ar原子碰撞而在Ag(001)上化学吸附的O-2的解吸和解离。两种方法的横截面都根据惰性气体原子的入射角和总冲击能而迅速增加。虽然预计会随着能量的增加而增加,但随角度的增加有些令人惊讶,并且比以前研究的系统明显地大。此外,解吸的横截面随着覆盖率而减小。在高冲击能量和高覆盖率的限制下,其值始终大于解离值。因此,两个过程之间的支化比取决于惰性气体原子的能量和入射角。原子氧在任何碰撞条件下都不会除去,因为它具有更大的结合能。为了解释实验结果,使用包含多重散射的简单模型进行了分子动力学模拟,我们发现截面的角度依赖性由表面波纹和多重散射确定,多重散射抑制了法向入射时的脱附,而高能阈值由能量损失给基材确定。 (C)1998美国物理研究所。 [参考:30]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号