首页> 外文期刊>Plasmonics >Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells
【24h】

Optimization of Dielectric-Coated Silver Nanoparticle Films for Plasmonic-Enhanced Light Trapping in Thin Film Silicon Solar Cells

机译:薄膜硅太阳能电池中等离子增强光阱的介电涂层银纳米粒子薄膜的优化。

获取原文
获取原文并翻译 | 示例
           

摘要

Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and shortcircuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF_2, n=1.4), tantalum pentoxide (Ta_2O_5, n=2.2), and titanium dioxide (TiO_2, n=2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO_2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF_2. We also further optimize the thickness of MgF_2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF_2 coating and a back reflector.
机译:从金属纳米颗粒捕获表面等离激元增强的光是增加活性硅层中的光吸收并因此提高硅太阳能电池的光电流的一种有前途的方式。在本文中,我们将银纳米颗粒应用于多晶硅薄膜太阳能电池的背面,并系统地研究了介电环境对器件吸收和短路电流密度(Jsc)的影响。研究了三种不同的介电层:氟化镁(MgF_2,n = 1.4),五氧化二钽(Ta_2O_5,n = 2.2)和二氧化钛(TiO_2,n = 2.6)。从实验上,我们发现较高折射率的介电涂层会导致主要的等离子体消光峰发生红移,并且在我们的薄膜太阳能电池应用中令人关注的光谱区域内激发了更高的模式。光学特征表明,涂覆有最高折射率的电介质TiO_2的纳米颗粒具有最高的吸收增强75.6%;然而,从外部量子效率表征来看,通过用较低折射率的MgF_2涂覆纳米颗粒,可以实现最高短路电流密度Jsc增强45.8%。我们还进一步优化了MgF_2的厚度,并使用210 nm MgF_2涂层和背面反射器实现了最终的50.2%Jsc增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号