首页> 外文期刊>Solid-State Electronics >High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate
【24h】

High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate

机译:直接在Si(0 0 1)衬底上生长的高质量弛豫Ge层

获取原文
获取原文并翻译 | 示例
           

摘要

After a long period of developing integrated circuit technology through simple scaling of silicon devices, the semiconductor industry is now embracing technology boosters such as strain for higher mobility channel material. Germanium is the logical supplement to enhance existing technologies, as its material behaviour is very close to silicon, and to create new functional devices that cannot be fabricated from silicon alone (Hartmann et al. (2004) [1 ]). Germanium wafers are, however, both expensive and less durable than their silicon counterparts. Hence it is highly desirable to create a relaxed high quality Ge layer on a Si substrate, with the provision that this does not unduly compromise the planarity of the system. The two temperature method, proposed by Colace et al. (1997) [2], can give smooth (RMS surface roughness below 1 nm) and low threading dislocation density (TDD <108 cm"2) Ge layers directly on a Si(0 0 1) wafer (Halbwax et al. (2005) [3]), but these are currently of the order of 1-2 nm thick (Hartmann et al. (2009) [4]). We present an in depth study of two temperature Ge layers, grown by reduced pressure chemical vapour deposition (RP-CVD), in an effort to reduce the thickness. We report the effect of changing the thickness, of both the low temperature (LT) and the high temperature (HT) layers, emphasising the variation of TDD, surface morphology and relaxation. Within this study, the LT Ge layer is deposited directly on a Si(0 0 1) substrate at a low temperature of 400 ℃. This low temperature is known to generate monolayer islands (Park et al. (2006) [5]), but is sufficiently high to maintain crystallinity whilst keeping the epitaxial surface as smooth as possible by suppressing further island growth and proceeding in a Frank-van der Merwe growth mode. This LT growth also generates a vast number of dislocations, of the order of 10~8-l 0~9 cm~(-2), that enable the next HT step to relax the maximum amount of strain possible. The effect of varying the HT layer thickness is studied by depositing on a LT layer of fixed thickness (100 nm) at a higher growth temperature of 670 °C We find that the HT layer allows Ge-on-Ge adatom transport to minimise the surface energy and smooth the layer. The final step to the technique is annealing at a high temperature that allows the dislocations generated to glide, increasing the degree of relaxation, and annihilate. We find that annealing can reduce the TDD to the order of 10~7 cm~(-2), but at a cost of a significantly roughened surface.
机译:在通过简单地缩放硅器件来长期发展集成电路技术之后,半导体行业现在正在拥抱诸如助力更高迁移率沟道材料的应变之类的技术助推器。锗是合乎逻辑的补充,可以增强现有技术,因为它的材料性能与硅非常接近,并且可以创建不能仅由硅制造的新功能器件(Hartmann等人(2004)[1])。但是,锗晶片比硅晶片贵且耐用。因此,非常希望在Si衬底上形成松弛的高质量Ge层,前提是这不会不适当地损害系统的平面性。 Colace等人提出的两种温度方法。 (1997)[2],可以在Si(0 0 1)晶片上直接获得光滑的(RMS表面粗糙度低于1 nm)和低的螺纹位错密度(TDD <108 cm“ 2)Ge层(Halbwax等人(2005) )[3]),但目前厚度约为1-2 nm(Hartmann et al。(2009)[4])。我们对由减压化学蒸气生长的两个温度Ge层进行了深入研究。为了减小厚度,我们报告了改变低温(LT)和高温(HT)层厚度的影响,强调了TDD的变化,表面形貌和在这项研究中,LT Ge层是在400℃的低温下直接沉积在Si(0 0 1)衬底上的,这种低温已知会生成单层岛(Park等人(2006)[5])。 ),但足够高以保持结晶度,同时通过抑制进一步的岛状生长并在Frank-van der Mer中进行加工来保持外延表面尽可能光滑我们成长模式。 LT的生长还会产生大量的位错,数量级为10〜8-1 0〜9 cm〜(-2),这使得接下来的HT步骤可以释放最大的应变。通过在670°C的较高生长温度下在固定厚度(100 nm)的LT层上沉积来研究改变HT层厚度的影响,我们发现HT层允许Ge-on-Ge原子迁移以最小化表面能量和平滑层。该技术的最后一步是在高温下退火,这可使产生的位错滑动,增加弛豫程度并消除。我们发现,退火可以将TDD降低到10〜7 cm〜(-2)的数量级,但以显着粗糙的表面为代价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号