首页> 外文期刊>Physical Review. B, Condensed Matter >Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems
【24h】

Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

机译:动力学路径对能隙的影响以及均场量子自旋系统路径积分中自由能的修正

获取原文
获取原文并翻译 | 示例
           

摘要

In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016)] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.
机译:在当前对均场量子自旋系统的研究中,人们非常关注基态能量和激发隙的计算,尤其是后者,它在量子退火中起着重要作用。在纯系统中,可以通过各种现有方法(例如,Holstein-Primakoff变换)获得有限间隙,而在许多先前的工作中,也使用瞬时子对一阶相变处的隧穿分裂进行了详细研究。但是,在无序系统中,要计算具有特定实现的大型系统的差距仍然是一项挑战。迄今为止,仅量子蒙特卡罗技术可用于此类研究。最近,Knysh [自然通讯。 [7,12370(2016)]提出了一种方法,其中将此类系统的指数级大维浓缩为低得多的随机势,从而可以高效地研究此类系统。在此,我们基于广泛用于分析均值场模型的分区函数的静态逼近方法,提出一种略有不同的方法。通过将动态路径合并到路径积分中,可以解决引起激发间隙和自由能的非广泛校正的量子效应。有效哈密顿量的时间指数级曲线的迹线的时间依赖性是通过微分求解一个微分方程来计算的,从而得到路径积分的有限大小级数展开。提出了用于第一激发态能量的公式,以帮助计算间隙。我们在存在横向场的情况下,使用无限范围铁磁伊辛模型和霍普菲尔德模型来说明我们的方法。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2018年第9期|094417.1-094417.16|共16页
  • 作者

    Yang Wei Koh;

  • 作者单位

    Bioinformatics Institute, 30 Biopolis Street, No. 07-01, Matrix, Singapore 138671;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号