首页> 外文期刊>Journal of the American Chemical Society >Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA
【24h】

Molecular Dynamics Simulations Identify Time Scale of Conformational Changes Responsible for Conformational Selection in Molecular Recognition of HIV-1 Transactivation Responsive RNA

机译:分子动力学模拟识别负责构象选择的构象变化的时间尺度,该构象选择用于HIV-1反式激活RNA的分子识别。

获取原文
获取原文并翻译 | 示例
           

摘要

The HIV-1 Tat protein and several small molecules bind to HIV-1 transactivation responsive RNA (TAR) by selecting sparsely populated but pre-existing conformations. Thus, a complete characterization of TAR conformational ensemble and dynamics is crucial to understand this paradigmatic system and could facilitate the discovery of new antivirals targeting this essential regulatory element. We show here that molecular dynamics simulations can be effectively used toward this goal by bridging the gap between functionally relevant time scales that are inaccessible to current experimental techniques. Specifically, we have performed several independent microsecond long molecular simulations of TAR based on one of the most advanced force fields available for RNA, the parmbsc0 AMBER. Our simulations are first validated against available experimental data, yielding an excellent agreement with measured residual dipolar couplings and order parameter S~2. This contrast with previous molecular dynamics simulations (Salmon et al., J. Am. Chem. Soc. 2013 135, 5457-5466) based on the CHARMM36 force field, which could achieve only modest accord with the experimental RDC values. Next, we direct the computation toward characterizing the internal dynamics of TAR over the microsecond time scale. We show that the conformational fluctuations observed over this previously elusive time scale have a strong functionally oriented character in that they are primed to sustain and assist ligand binding.
机译:HIV-1 Tat蛋白和一些小分子通过选择人口稀少但预先存在的构象与HIV-1反式激活应答RNA(TAR)结合。因此,TAR构象集合和动力学的完整表征对于理解该范例系统至关重要,并且可以促进针对该基本调控元件的新抗病毒药物的发现。我们在这里表明,通过弥合当前实验技术无法访问的功能相关时标之间的差距,可以将分子动力学模拟有效地用于实现这一目标。具体来说,我们基于可用于RNA的最先进的力场之一parmbsc0 AMBER进行了TAR的几个独立的微秒长分子模拟。我们的仿真首先根据可用的实验数据进行了验证,与测得的残留偶极耦合和阶跃参数S〜2形成了极好的一致性。这与之前基于CHARMM36力场的分子动力学模拟(Salmon等人,J。Am。Chem。Soc。2013 135,5457-5466)形成对比,后者只能实现与实验RDC值的适度匹配。接下来,我们将计算引导到表征微秒时间尺度上TAR的内部动力学。我们显示,在此先前难以捉摸的时间尺度上观察到的构象波动具有强大的功能导向特征,因为它们被引发以维持和协助配体结合。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第44期|15631-15637|共7页
  • 作者单位

    Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy, Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy, Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Juelich, 52425 Juelich, Germany;

    Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Juelich, 52425 Juelich, Germany, Juelich Supercomputing Centre, Forschungszentrum Juelich, 52425 Juelich, Germany;

    International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, 34149 Trieste, Italy, Departamento de Quimica Biologica-CONICET/Departamento de Quimica Inorganica, Analitica y Quimica Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina;

    Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Juelich, 52425 Juelich, Germany;

    Scuola Internazionale Superiore di Studi Avanzati (SISSA/ISAS), via Bonomea 265, 34136 Trieste, Italy;

    Department of Chemistry and Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States;

    Institute of Neuroscience and Medicine INM-9 and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biophysics, German Research School for Simulation Sciences, Forschungszentrum Juelich, 52425 Juelich, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号