...
首页> 外文期刊>Journal of Crystal Growth >Uniformity of the wafer surface temperature during MOVPE growth of GaN-based laser diode structures on GaN and sapphire substrate
【24h】

Uniformity of the wafer surface temperature during MOVPE growth of GaN-based laser diode structures on GaN and sapphire substrate

机译:在GaN和蓝宝石衬底上进行基于GaN的激光二极管结构的MOVPE生长期间晶片表面温度的均匀性

获取原文
获取原文并翻译 | 示例
           

摘要

Wafer bowing has a strong impact on the wavelength homogeneity of InGaN based light emitters due to the strong temperature dependence of the In incorporation. Using in-situ curvature measurements and pyrometry we have studied the impact of growth conditions on the lateral and vertical temperature distribution across the wafer and on wafer bow on sapphire and GaN substrates. From the pyrometry signal at 950 nm the temperature of the substrate holder can be deduced. Using 400 nm pyrometry the surface temperature was determined for sufficiently thick GaN layers. While total flow and satellite rotation were found to have no impact, the total pressure affects the vertical temperature profile and thus the wafer bow. However, the effect is small and can only be used for fine tuning. To compensate for the strain of the AlGaN cladding layer in laser structures precurved GaN substrates are shown to be advantageous. Photoluminescence confirmed a spatially uniform surface temperature distribution during the deposition of the InGaN quantum well active region with a peak wavelength around 500 nm and a deviation as low as 3.5 nm on flat sapphire substrates and precurved GaN substrates.
机译:由于In掺入的强烈温度依赖性,晶圆弯曲对InGaN基发光体的波长均匀性有很大影响。使用原位曲率测量和高温测定法,我们研究了生长条件对蓝宝石和GaN衬底上晶片以及晶片弓上横向和垂直温度分布的影响。从950nm的高温测定信号中,可以推导出基板支架的温度。使用400 nm高温测定法,确定足够厚的GaN层的表面温度。虽然发现总流量和卫星旋转没有影响,但总压力影响垂直温度曲线,从而影响晶圆弯曲度。但是,效果很小,只能用于微调。为了补偿激光结构中AlGaN覆盖层的应变,预弯曲的GaN衬底被证明是有利的。光致发光证实在沉积InGaN量子阱有源区期间,在平坦的蓝宝石衬底和预弯曲的GaN衬底上,其峰值波长约为500 nm,偏差低至3.5 nm,在空间上表面温度分布均匀。

著录项

  • 来源
    《Journal of Crystal Growth》 |2011年第1期|p.5-9|共5页
  • 作者单位

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany;

    LayTec GmbH, Seesener Str. 10-13, 10709 Berlin, Germany;

    LayTec GmbH, Seesener Str. 10-13, 10709 Berlin, Germany;

    Ferdinand-Braun-Institut, Leibniz-Institut fuer Hoechstfrequenztechnik, Gustav-Kirchhoff-Strasse 4, 12489 Berlin, Germany,Institut fuer Festkoerperphysik, Technische Universitaet Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A1. In situ characterization; A2. Metal organic vapor phase epitaxy; A3. Low press; B1. Nitrides; B2. Semiconducting indium compounds;

    机译:A1。原位表征;A2。金属有机气相外延;A3。低按;B1。氮化物;B2。半导体铟化合物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号