...
首页> 外文期刊>International journal of circuit theory and applications >Analyses and techniques for phase noise reduction in CMOS Colpitts oscillator topology
【24h】

Analyses and techniques for phase noise reduction in CMOS Colpitts oscillator topology

机译:CMOS Colpitts振荡器拓扑中降低相位噪声的分析和技术

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports the analyses of three techniques for phase noise reduction in the complementary metal-oxide semiconductor (CMOS) Colpitts oscillator circuit topology. Namely, the three techniques are inductive degeneration, noise filter, and optimum current density. The design of the circuit topology is carried out in 28-nm bulk CMOS technology. The analytical expression of the oscillation frequency is derived and validated through circuit simulations. Moreover, the theoretical analyses of the three techniques are carried out and verified by means of circuit simulations within a commercial design environment. The results obtained for the inductive degeneration and noise filter show the existence of an optimum inductance for minimum phase noise. The results obtained for the optimum bias current density technique applied to a Colpitts oscillator circuit topology incorporating either inductive degeneration or noise filter show the existence of an optimum bias current density for minimum phase noise. Overall, the analyses show that the adoption of these techniques may lead to a potential phase noise reduction up to 19dB at a 1-MHz frequency offset for an oscillation frequency of 10GHz. (c) 2015 The Authors International Journal of Circuit Theory and Applications Published by John Wiley & Sons Ltd.
机译:本文报告了在互补金属氧化物半导体(CMOS)Colpitts振荡器电路拓扑中用于降低相位噪声的三种技术的分析。即,这三种技术是感应退化,噪声滤波器和最佳电流密度。电路拓扑的设计是在28纳米体CMOS技术中进行的。通过电路仿真得出并验证了振荡频率的解析表达式。此外,在商业设计环境中,通过电路仿真对三种技术进行了理论分析并得到了验证。通过电感性退化和噪声滤波器获得的结果表明,存在一个最佳电感,可将相位噪声降至最低。对于结合了电感性退化或噪声滤波器的Colpitts振荡器电路拓扑的最佳偏置电流密度技术获得的结果表明,存在着用于最小相位噪声的最优偏置电流密度。总体而言,分析表明,对于10GHz的振荡频率,在1MHz频率偏移下,采用这些技术可能会导致潜在的相位噪声降低高达19dB。 (c)2015年《作者国际电路理论与应用杂志》,约翰·威利父子有限公司出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号