...
首页> 外文期刊>PLoS One >Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons
【24h】

Mechanics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons

机译:走路和跑步和下坡的力学:一个联合水平的视角,指导下肢外骨骼设计

获取原文
           

摘要

Lower-limb wearable robotic devices can improve clinical gait and reduce energetic demand in healthy populations. To help enable real-world use, we sought to examine how assistance should be applied in variable gait conditions and suggest an approach derived from knowledge of human locomotion mechanics to establish a ‘roadmap’ for wearable robot design. We characterized the changes in joint mechanics during walking and running across a range of incline/decline grades and then provide an analysis that informs the development of lower-limb exoskeletons capable of operating across a range of mechanical demands. We hypothesized that the distribution of limb-joint positive mechanical power would shift to the hip for incline walking and running and that the distribution of limb-joint negative mechanical power would shift to the knee for decline walking and running. Eight subjects (6M,2F) completed five walking (1.25 m s -1 ) trials at -8.53°, -5.71°, 0°, 5.71°, and 8.53° grade and five running (2.25 m s -1 ) trials at -5.71°, -2.86°, 0°, 2.86°, and 5.71° grade on a treadmill. We calculated time-varying joint moment and power output for the ankle, knee, and hip. For each gait, we examined how individual limb-joints contributed to total limb positive, negative and net power across grades. For both walking and running, changes in grade caused a redistribution of joint mechanical power generation and absorption. From level to incline walking, the ankle’s contribution to limb positive power decreased from 44% on the level to 28% at 8.53° uphill grade ( p 0.0001) while the hip’s contribution increased from 27% to 52% ( p 0.0001). In running, regardless of the surface gradient, the ankle was consistently the dominant source of lower-limb positive mechanical power (47–55%). In the context of our results, we outline three distinct use-modes that could be emphasized in future lower-limb exoskeleton designs 1) Energy injection: adding positive work into the gait cycle, 2) Energy extraction: removing negative work from the gait cycle, and 3) Energy transfer: extracting energy in one gait phase and then injecting it in another phase ( i . e ., regenerative braking).
机译:下肢可穿戴机器人设备可以改善临床步态,并降低健康人群的能量需求。为了帮助实现现实世界的使用,我们试图检查如何在可变步态条件下应用帮助,并建议一种从人体运动机制知识中获得的方法,以建立可穿戴机器人设计的“路线图”。我们在步行和跨越一系列倾斜/下降等级的步行过程中表征了联合力学的变化,然后提供了一种分析,通知能够在一系列机械需求上运行的低肢前骨骼的发展。我们假设肢体关节正机械电力的分布将转向臀部的臀部,倾斜行走和运行,并且肢体关节负面机械动力的分布将转向膝盖以进行行走和跑步下降。八个受试者(6M,2F)在-8.53°,-5.71°,-5.71°,0°,5.71°和8.53°等,5.71°和8.53°等,5.71°,5.71°,在-5.71°的试验中完成五次步行(1.25ms -1)试验。在跑步机上-2.86°,0°,2.86°和5.71°等级。我们计算了脚踝,膝盖和臀部的时变的联合力矩和功率输出。对于每个步态,我们检查了单个肢体关节如何为跨等级的总肢体,负数和净权力贡献。对于行走和运行,等级的变化导致联合机械发电和吸收的再分配。从水平到倾斜行走,脚踝对肢体正功率的贡献在8.53°上坡级(P&LT; 0.0001)的水平下降到28%,而臀部的贡献从27%增加到52%(P <0.0001 )。在跑步时,无论表面渐变如何,踝关节都是始终如一的低肢体阳性机械功率(47-55%)的主导来源。在我们的结果的背景下,我们概述了三种不同的使用模式,可以在未来的下肢外屏幕设计中强调1)能量注射:将正面工作加入步态循环,2)能量提取:从步态周期中移除负面工作和3)能量转移:提取一个步态相中的能量,然后在另一个阶段注入其中(即,再生制动)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号