首页> 外文期刊>Oeno One >Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming
【24h】

Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming

机译:葡萄对温度适应温育的策略的发育,分子和遗传研究

获取原文
           

摘要

Aim: In the long term, genetic improvement is one of the major strategies to support sustainable wine production in a changing climate. Over the past 5 years, we have developed an interdisciplinary research program that aimed to: i) characterize the impact of temperature increase sensed by the entire plant or individual bunches on the development and functioning of the plant, ii) identify the physiological and molecular mechanisms regulating the response of vegetative and reproductive development to heat stress and iii) develop tools to map quantitative trait loci (QTLs) of plant and berry development in duly controlled, stable, and contrasting environmental conditions.Methods and results: Performing high-throughput genomic analyses combined with the use of innovative experimental designs (fruiting cuttings, microvines, single berry sampling) was critical to decipher the ecophysiological and molecular mechanisms involved in the vine response to high temperature.Conclusion: Warming promotes vegetative growth and hampers plant carbon balance, disturbing flower set and young berry development. High temperatures modify primary and secondary fruit metabolisms, desynchronizing sugar and organic acid metabolisms and delaying sugar and polyphenol accumulation during ripening. The study of day and night transcriptomic and proteomic signatures associated with heat highlighted key players of the response to temperature in the fruit.?Significance and impact of the study: Capitalizing on this knowledge, a new program is being proposed for the selection of cultivars limiting the accumulation of sugars in the berry while maintaining other qualitative compounds. Introduction Grapevine performance, including productivity and wine quality, is highly dependent on climate. High temperatures (T°) hamper carbon assimilation beyond a 30°C threshold (Greer and Weedon, 2012) and limit the yield by reducing the number of berries per vine (Rogiers et al., 2011). The composition of the wines also depends on thermal conditions (Spayd et al., 2002; Carbonneau et al., 2015) because T° increases sugar concentration in the berry at the expense of malic acid and secondary metabolites, leading to unbalanced wines.In Europe, wine production relies on close interactions between the variety, the environment and the viticultural practices. Climate change disrupts this balance; hence varietal adaptation is required to maintain traditional and qualitative viticulture in these regions (Torregrosa et al., 2011; Ollat et al., 2014 and 2015). In the long term, genetic improvement is one of the best strategies to support sustainable wine production systems under global warming. Various data confirm that genetic diversity within Vitis may be exploited for photosynthesis adaptation to temperature. For example, photosynthesis was not reduced at T°V. amurensis (Luo et al., 2011), and most wild species and hybrids between V. labrusca and V. vinifera also displayed a better heat tolerance than V. vinifera (Xu et al., 2014). Recently, Hochberg et al. (2015) observed metabolic adaptations resulting in greater growth inhibition of leaves at 35°C for cv. Syrah compared to Cabernet Sauvignon. Unfortunately, the lack of physiological and genetic knowledge on the mechanisms of adaptation of grapevine to T° limits the development of non-empirical breeding programs (Torregrosa et al., 2011), insofar as fruit quality, rather than carbon fixation, is considered as the principal selection target. In the last years, much effort has been carried out under vineyard conditions to identify regulatory mechanisms of primary and secondary metabolisms in berries (Deluc et al., 2008; Boss and Davies, 2009; Hichri et al., 2011; Lecourieux et al., 2014) and to identify transcriptomic changes induced by thermal stress applied to the berry (Pillet et al., 2012) or to the whole plant (Carbonell-Bejerano et al., 2013; Rienth et al., 2014b; Rienth et al., 2016).Despite these recent successes, we are far from a comprehensive picture of the regulatory mechanisms involved in the adaptation of the grape to heat stress. To date, there is no genetic tool or resource suitable to support breeding programs dealing with T° resilience. Over the last 5 years, we have developed a research program aiming to: i) characterize the effects of T° increase, applied at the whole plant or fruit level, on the development and functioning of the plant (organogenesis, biomass partitioning, metabolism of the berry), ii) identify the specific roles of carbon balance and molecular (transcription) mechanisms in regulating yield and quality development under high T° and iii) develop resources to study the genetic structure and stability of developmental and qualitative berry characters against thermal fluctuations.As with other perennial plants, the biological properties of grapevine cause methodological and experimental difficulties for studying the response to environmental changes and genetic diversity. Indeed, i
机译:目的:从长远来看,遗传改良是在气候变化中支持可持续葡萄酒生产的主要策略之一。在过去的5年中,我们制定了一项跨学科研究计划,旨在:i)表征整个植物或单个植物群感测到的温度升高对植物发育和功能的影响,ii)识别生理和分子机制调节营养和生殖发育对热胁迫的响应,iii)开发工具来绘制在适当控制,稳定和对比的环境条件下植物和浆果发育的数量性状位点(QTL)的方法和结果:进行高通量基因组分析结合使用创新的实验设计(结果插条,微型葡萄藤,单浆果取样)对于解读葡萄藤对高温的反应所涉及的生态生理和分子机制至关重要。结论:升温促进植物生长,阻碍植物碳平衡,干扰花朵固定和幼果的发育。高温会改变初级和次级水果的新陈代谢,使糖和有机酸的代谢失去同步,并延迟成熟期间糖和多酚的积累。昼夜与热相关的转录组和蛋白质组学特征的研究突出了果实对温度的响应的关键因素。研究的意义和影响:利用这一知识,正在提出一个新的计划来选择限制品种的品种。浆果中糖分的积累,同时保持其他定性化合物。简介葡萄的性能,包括生产力和葡萄酒质量,在很大程度上取决于气候。高温(T°)会阻止碳同化超过30°C阈值(Greer和Weedon,2012),并通过减少每个葡萄藤的浆果数量来限制产量(Rogiers et al。,2011)。葡萄酒的成分还取决于热条件(Spayd等人,2002; Carbonneau等人,2015),因为T°会增加浆果中的糖浓度,但会损害苹果酸和次生代谢产物,导致葡萄酒不平衡。在欧洲,葡萄酒生产依赖于品种,环境和葡萄栽培实践之间的紧密相互作用。气候变化破坏了这种平衡;因此在这些地区保持传统的和定性的葡萄栽培需要品种适应(Torregrosa等,2011; Ollat等,2014和2015)。从长远来看,遗传改良是在全球变暖下支持可持续葡萄酒生产系统的最佳策略之一。各种数据证实,葡萄内的遗传多样性可用于光合作用适应温度。例如,在T°V下光合作用没有降低。 amurensis(Luo et al。,2011),以及V. labrusca和V. vinifera之间的大多数野生物种和杂种也表现出比V. vinifera更好的耐热性(Xu et al。,2014)。最近,Hochberg等人。 (2015年)观察到新陈代谢的适应性导致在35°C下叶片对叶片的生长抑制作用更大。西拉与赤霞珠相比。不幸的是,就葡萄品质而不是碳固定而言,缺乏对葡萄适应T°的机制的生理和遗传知识限制了非经验育种计划的发展(Torregrosa等,2011)。主要选择目标。在过去的几年中,在葡萄园条件下进行了很多努力来确定浆果中一级和二级代谢的调节机制(Deluc等,2008; Boss和Davies,2009; Hichri等,2011; Lecourieux等。 (2014年),并确定由施加于浆果(Pillet等,2012)或整个植物(Carbonell-Bejerano等,2013; Rienth等,2014b; Rienth等。 ,2016)。尽管取得了这些最近的成就,但我们对葡萄适应热胁迫的调控机制的全面了解还远远不够。迄今为止,尚无适合支持T°适应性育种计划的遗传工具或资源。在过去的5年中,我们制定了一项研究计划,旨在:i)表征T°升高对整个植物或果实水平施加的影响,对植物的发育和功能(器官发生,生物量分配,代谢ii)识别碳平衡和分子(转录)机制在高T°下调节产量和品质发展的特定作用,并且iii)开发资源以研究发育和定性的浆果特性对热波动的遗传结构和稳定性与其他多年生植物一样,葡萄的生物学特性在研究对环境变化和遗传多样性的响应方面造成方法和实验上的困难。的确,我

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号