首页> 外文期刊>Microbial Cell Factories >Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains
【24h】

Engineering protein production by rationally choosing a carbon and nitrogen source using E. coli BL21 acetate metabolism knockout strains

机译:通过使用大肠杆菌BL21乙酸酯代谢敲除菌株合理选择碳源和氮源来工程化蛋白质生产

获取原文
           

摘要

Escherichia coli (E. coli) is a bacteria that is widely employed in many industries for the production of high interest bio-products such as recombinant proteins. Nevertheless, the use of E. coli for recombinant protein production may entail some disadvantages such as acetate overflow. Acetate is accumulated under some culture conditions, involves a decrease in biomass and recombinant protein production, and its metabolism is related to protein lysine acetylation. Thereby, the carbon and nitrogen sources employed are relevant factors in cell host metabolism, and the study of the central metabolism of E. coli and its regulation is essential for optimizing the production of biomass and recombinant proteins. In this study, our aim was to find the most favourable conditions for carrying out recombinant protein production in E. coli BL21 using two different approaches, namely, manipulation of the culture media composition and the deletion of genes involved in acetate metabolism and Nε-lysine acetylation. We evaluated protein overexpression in E. coli BL21 wt and five mutant strains involved in acetate metabolism (Δacs, ΔackA and Δpta) and lysine acetylation (ΔpatZ and ΔcobB) grown in minimal medium M9 (inorganic ammonium nitrogen source) and in complex TB7 medium (peptide-based nitrogen source) supplemented with glucose (PTS carbon source) or glycerol (non-PTS carbon source). We observed a dependence of recombinant protein production on acetate metabolism and the carbon and nitrogen source employed. The use of complex medium supplemented with glycerol as a carbon source entails an increase in protein production and an efficient use of resources, since is a sub-product of biodiesel synthesis. Furthermore, the deletion of the ackA gene results in a fivefold increase in protein production with respect to the wt strain and a reduction in acetate accumulation. The results showed that the use of diverse carbon and nitrogen sources and acetate metabolism knockout strains can redirect E. coli carbon fluxes to different pathways and affect the final yield of the recombinant protein bioprocess. Thereby, we obtained a fivefold increase in protein production and an efficient use of the resources employing the most suitable strain and culture conditions.
机译:大肠埃希氏菌(E.coli)是一种细菌,其在许多行业中广泛用于生产高关注度的生物产物,例如重组蛋白。然而,将大肠杆菌用于重组蛋白生产可能会带来一些缺点,例如乙酸盐溢出。乙酸盐在某些培养条件下积累,涉及生物量的减少和重组蛋白的产生,其代谢与蛋白赖氨酸的乙酰化有关。因此,所使用的碳源和氮源是细胞宿主代谢的相关因素,研究大肠杆菌的中心代谢及其调控对于优化生物量和重组蛋白的生产至关重要。在这项研究中,我们的目的是找到使用两种不同方法在大肠杆菌BL21中进行重组蛋白生产的最有利条件,即操作培养基成分和删除涉及乙酸代谢和Nε-赖氨酸的基因乙酰化。我们评估了E.coli BL21 wt和5种参与醋酸盐代谢(Δacs,ΔackA和Δpta)和赖氨酸乙酰化(ΔpatZ和ΔcobB)的突变株的蛋白质过表达,这些突变株在基本培养基M9(无机铵氮源)和复杂TB7培养基(肽基氮源)补充了葡萄糖(PTS碳源)或甘油(非PTS碳源)。我们观察到重组蛋白生产对乙酸酯代谢以及所使用的碳和氮源的依赖性。使用补充有甘油作为碳源的复合培养基,由于生物柴油合成的副产品,因此增加了蛋白质的生产并有效地利用了资源。此外,ackA基因的缺失导致相对于wt菌株的蛋白质产量增加了五倍,并且乙酸盐积累的减少。结果表明,使用不同的碳和氮源以及乙酸代谢敲除菌株可以将大肠杆菌的碳通量重定向到不同的途径,并影响重组蛋白生物过程的最终产量。因此,我们获得了蛋白质产量的五倍增长,并利用了最合适的菌株和培养条件有效利用了资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号