首页> 外文学位 >Genome Engineering to Improve Acetate and Cellulosic Hydrolysate Tolerance in E. coli for Improved Cellulosic Biofuel Production.
【24h】

Genome Engineering to Improve Acetate and Cellulosic Hydrolysate Tolerance in E. coli for Improved Cellulosic Biofuel Production.

机译:基因组工程,以提高大肠杆菌中醋酸盐和纤维素水解产物的耐受性,从而改善纤维素生物燃料的生产。

获取原文
获取原文并翻译 | 示例

摘要

Engineering organisms for improved performance using lignocellulose feedstocks is an important step toward a sustainable fuel and chemical industry. Cellulosic feedstocks contain carbon and energy in the form of cellulosic and hemicellulosic sugars. Pretreatment processes that hydrolyze lignocellulose into its component sugars often also result in the accumulation of growth inhibitory compounds, such as acetate and furfural among others. Engineering tolerance to these inhibitors is a necessary step for the efficient production of biofuels and biochemicals. For this end we use multiple genome-wide and targeted tools to alter the genetic makeup of E. coli so we can obtain the desired trait of growth on lignocellulosic hydrolysate and tolerance to inhibitory concentrations of acetate. Each of these tools used introduces mutations within a population. These populations are placed in a selection environment where the fittest survive. The change in population genotypes is then analyzed. We applied a recently reported strategy for engineering tolerance towards the goal of increasing Escherichia coli growth in elevated acetate concentrations (Lynch, Warnecke et al. 2007). We performed selections upon an E. coli genome library using a moderate selection pressure. These studies identified a range of high-fitness genes that are normally involved in membrane and extracellular processes, are key regulated steps in pathways, and are involved in pathways that yield specific amino acids and nucleotides. Supplementation of the products and metabolically-related metabolites of these pathways increased growth rate in acetate.;Directed evolution has been used successfully to increase tolerance to a variety of inhibitors on a variety of microorganisms. However, the number of unique and non-neutral mutations searched has been limited. With recent advances in DNA synthesis and recombination technologies, new advanced tools can be used. We report a two step strategy that can search a very large number of mutations that are more likely to improve the tolerance of the organism. First, the trackable multiplex recombineering (TRMR) tool searches a genome-wide library for single mutations which have a mutation which either turns up or down gene expression. Based on microarray analysis, a small number of targets are selected for recursive multiplex recombineering. We constructed and searched a library of mutations in the ribosomal binding site of targeted genes, including clones which have multiple mutations. We conducted this strategy in two inhibitory environments (acetate and lignocellulosic hydrolysate). For both cases, we successfully found single mutants from the first step, but in the second step, we found no tolerant mutants for acetate and multiple tolerant single mutants for the hydrolysate. A model was applied to predict the outcome of these selections with varying epistatic effects. This strategy is capable of searching a very large mutational space, but without prior knowledge of epistatic interaction, successful multiple mutants are not guaranteed.
机译:利用木质纤维素原料改造生物以提高性能的过程是朝着可持续的燃料和化学工业迈出的重要一步。纤维素原料以纤维素和半纤维素糖的形式包含碳和能量。将木质纤维素水解成其成分糖的预处理过程通常还会导致生长抑制性化合物(例如乙酸盐和糠醛)的积累。对这些抑制剂的工程耐受性是有效生产生物燃料和生物化学物质的必要步骤。为此,我们使用多种全基因组和靶向工具来改变大肠杆菌的遗传组成,以便我们能够在木质纤维素水解产物上获得所需的生长性状以及对乙酸抑制浓度的耐受性。这些工具中的每一种都会在种群内引入突变。这些人群被置于优胜劣汰的选择环境中。然后分析种群基因型的变化。我们应用了最近报道的工程耐受性策略,以实现在乙酸盐浓度升高时增加大肠杆菌生长的目标(Lynch,Warnecke等,2007)。我们使用中等选择压力对大肠杆菌基因组文库进行选择。这些研究确定了一系列高适应性基因,这些基因通常参与膜和细胞外过程,是途径中的关键调控步骤,并参与产生特定氨基酸和核苷酸的途径。补充这些途径的产物和与代谢相关的代谢物可增加乙酸盐的生长速率。直接进化已成功用于提高对多种微生物对多种抑制剂的耐受性。但是,搜索到的独特和非中性突变的数量受到限制。随着DNA合成和重组技术的最新发展,可以使用新的先进工具。我们报告了一种两步策略,可以搜索非常可能会提高生物体耐受性的大量突变。首先,可追踪的多重重组(TRMR)工具在全基因组库中搜索单个突变,该单个突变的突变会导致基因表达升高或降低。基于微阵列分析,选择了少量目标用于递归多重重组。我们构建并搜索了靶向基因的核糖体结合位点的突变库,包括具有多个突变的克隆。我们在两种抑制性环境(乙酸盐和木质纤维素水解物)中进行了该策略。对于这两种情况,我们都成功地从第一步中找到了单个突变体,但是在第二步中,我们没有发现对乙酸盐具有耐受性的突变体,对水解产物没有多个耐受性单个突变体。应用了一个模型来预测这些选择的结果,并产生不同的上位效应。该策略能够搜索非常大的突变空间,但是如果没有上位相互作用的事先知识,就不能保证成功的多个突变体。

著录项

  • 作者

    Sandoval, Nicholas Richard.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号