...
首页> 外文期刊>Current Directions in Biomedical Engineering >Development of a constitutive law for numerical simulation of artificial leaflet-structures for transcatheter heart valve prostheses : Current Directions in Biomedical Engineering
【24h】

Development of a constitutive law for numerical simulation of artificial leaflet-structures for transcatheter heart valve prostheses : Current Directions in Biomedical Engineering

机译:导管瓣膜人工瓣膜人工瓣叶结构数值模拟本构法的发展:生物医学工程的当前方向

获取原文
           

摘要

While the current generation of devices for minimally invasive treatment of severe symptomatic aortic valve stenosis is based on xenogenic leaflet-material, artificial polymeric leaflet-structures represent a promising approach for future improvement of heart valve performance. For enhanced long-term success of polymeric leafletstructures, limitations regarding calcification and durability have to be addressed. The objective of the presented study was the development of a constitutive law representing the material properties of artificial polymeric leaflet-structures of transcatheter heart valve prostheses in numerical simulation to assess the in silico leaflet-performance. Mechanical characterization of cast films and nonwoven specimens of a polycarbonate based silicone elastomer were conducted by means of uniaxial tension and planar shear testing, respectively. For validation purposes, experimental data were compared with the results of finite-element analysis (FEA) using different hyperelastic models. Strain energy function for third-order ogden hyperelastic model achieved the best fit of the non-linear stress-strain behavior of the isotropic polymeric material with the experimental data. It was chosen for further FEA of valve leaflet-performance under physiological pressurization to analyze the suitability of various manufacturing processes for polymeric leafletstructures. Therefore a specific leaflet-design with a wall thickness of 400 μm was used. As a result of FEA, time dependent leaflet-deformation, leaflet coaptation surface area (CSA) and leaflet opening area (LOA) of cast and nonwoven leaflet-structures were calculated. While LOA was comparable for cast and nonwoven leaflet-structures, obtained leaflet-dynamics in a cardiac cycle under physiological pressurization demonstrated crucial influence of the manufacturing process. For nonwoven leafletstructures, an enhanced CSA could be demonstrated in comparison to cast structures. FEA using a validated hyperelastic constitutive law represents a useful tool for in silico performance evaluation of polymeric leaflet-structures under physiological loading and proves the suitability of the polymeric artificial leaflet-material for percutaneous heart valve prostheses.
机译:虽然目前用于严重症状性主动脉瓣狭窄的微创治疗的设备是基于异种小叶材料,但人工聚合小叶结构代表了一种有希望的方法,可用于将来改善心脏瓣膜的性能。为了增强聚合物小叶结构的长期成功性,必须解决关于钙化和耐久性的限制。提出的研究的目的是发展本构定律,该定律代表数值模拟中经导管心脏瓣膜假体的人工聚合物小叶结构的材料特性,以评估计算机模拟的小叶性能。分别通过单轴拉伸和平面剪切试验对流延膜和聚碳酸酯基硅氧烷弹性体的非织造样品进行机械表征。为了验证目的,使用不同的超弹性模型将实验数据与有限元分析(FEA)的结果进行了比较。三阶ogden超弹性模型的应变能函数通过实验数据获得了各向同性聚合物材料非线性应力-应变行为的最佳拟合。选择它用于瓣膜小叶在生理加压下的性能的进一步有限元分析,以分析聚合物小叶结构的各种制造工艺的适用性。因此,使用了具有400μm壁厚的特定传单设计。作为有限元分析的结果,计算了铸型和非织造小叶结构随时间变化的小叶变形,小叶接合表面积(CSA)和小叶开口面积(LOA)。虽然LOA在浇铸和无纺布的瓣叶结构上具有可比性,但在生理加压下在心动周期中获得的瓣叶动力学表现出了制造过程的关键影响。对于非织造小叶结构,与铸造结构相比,可以证明其CSA增强。使用经验证的超弹性本构定律的有限元分析法是在生理负荷下对聚合物小叶结构进行计算机性能评估的有用工具,并证明了聚合物人工小叶材料对经皮心脏瓣膜假体的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号