首页> 外文期刊>Computers, Materials & Continua >The Global Nonlinear Galerkin Method for the Solution of von Karman Nonlinear Plate Equations: An Optimal & Faster Iterative Method for the Direct Solution of Nonlinear Algebraic Equations F(x) = 0, using x = λ[αF + (l-a)B~TF]
【24h】

The Global Nonlinear Galerkin Method for the Solution of von Karman Nonlinear Plate Equations: An Optimal & Faster Iterative Method for the Direct Solution of Nonlinear Algebraic Equations F(x) = 0, using x = λ[αF + (l-a)B~TF]

机译:von Karman非线性板方程组的整体非线性Galerkin方法:使用x =λ[αF+(l-a)B〜TF]求解非线性代数方程F(x)= 0的直接的最优和快速迭代方法

获取原文
获取原文并翻译 | 示例
           

摘要

The application of the Galerkin method, using global trial functions which satisfy the boundary conditions, to nonlinear partial differential equations such as those in the von Karman nonlinear plate theory, is well-known. Such an approach using trial function expansions involving multiple basis functions, leads to a highly coupled system of nonlinear algebraic equations (NAEs). The derivation of such a system of NAEs and their direct solutions have hitherto been considered to be formidable tasks. Thus, research in the last 40 years has been focused mainly on the use of local trial functions and the Galerkin method, applied to the piecewise linear system of partial differential equations in the updated or total La-grangean reference frames. This leads to the so-called tangent-stiffness finite element method. The piecewise linear tangent-stiffness finite element equations are usually solved by an iterative Newton-Raphson method, which involves the inversion of the tangent-stiffness matrix during each iteration. However, the advent of symbolic computation has made it now much easier to directly derive the coupled system of NAEs using the global Galerkin method. Also, methods to directly solve the NAEs, without inverting the tangent-stiffness matrix during each iteration, and which are faster and better than the Newton method are slowly emerging. In a previous paper [Dai, Paik and Atluri (201 la)], we have presented an exponentially convergent scalar homotopy algorithm to directly solve a large set of NAEs arising out of the application of the global Galerkin method to von Karman plate equations. While the results were highly encouraging, the computation time increases with the increase in the number of NAEs-the number of coupled NAEs solved by Dai, Paik and Atluri (2011 a) was of the order of 40. In this paper we present a much improved method of solving a larger system of NAEs, much faster. If F(x) = 0 [F_i(x_j) = 0] is the system of NAEs governing the modal amplitudes x_j [j= 1, 2...N], for large N, we recast the NAEs into a system of nonlinear ODEs: x = λ[αF + (1-α) B~TF], where A and α are scalars, and B_(ij)= eF_i/ex_j. We derive a purely iterative algorithm from this, with optimum value for λ and α being determined by keeping x on a newly defined invariant manifold [Liu and Atluri (2011b)]. Several numerical examples of nonlinear von Karman plates, including the post-buckling behavior of plates with initial imperfections are presented to show that the present algorithms for directly solving the NAEs are several orders of magnitude faster than those in Dai, Paik and Atluri (2011a). This makes the resurgence of simple global Galerkin methods, as alternatives to the finite element method, to directly solve nonlinear structural mechanics problems without piecewise linear formulations, entirely feasible.
机译:使用满足边界条件的全局试验函数的Galerkin方法在非线性偏微分方程(例如von​​ Karman非线性板理论中的方程)中的应用是众所周知的。这种使用涉及多个基函数的试验函数展开的方法导致了高度耦合的非线性代数方程组(NAE)。迄今为止,这种NAE系统及其直接解决方案的派生被认为是艰巨的任务。因此,过去40年的研究主要集中在局部试验函数和Galerkin方法的使用上,这些方法已应用于更新的或总的La-grangean参考系中的偏微分方程的分段线性系统。这导致了所谓的切线刚度有限元法。分段线性切线-刚度有限元方程通常通过迭代牛顿-拉夫森方法求解,该方法涉及在每次迭代过程中切线-刚度矩阵的求逆。但是,符号计算的出现使使用全局Galerkin方法直接导出NAE耦合系统变得更加容易。而且,正在逐渐出现直接求解NAE而不在每次迭代过程中求正切刚度矩阵求逆的方法,这些方法比牛顿方法更快,更好。在先前的一篇论文中[Dai,Paik and Atluri(201 la)],我们提出了一种指数收敛的标量同伦算法,以直接解决由于将全局Galerkin方法应用于von Karman板方程而产生的大量NAE。尽管结果令人鼓舞,但计算时间随NAE数量的增加而增加-Dai,Paik和Atluri(2011 a)解决的耦合NAE数量约为40。在本文中,我们提出了很多解决更大的NAE系统的改进方法,速度更快。如果F(x)= 0 [F_i(x_j)= 0]是控制模态振幅x_j的NAE系统[j = 1,2 ... N],则对于较大的N,我们将NAE重铸为非线性系统ODE:x =λ[αF+(1-α)B〜TF],其中A和α是标量,B_(ij)= eF_i / ex_j。我们从中推导出纯迭代算法,其中λ和α的最佳值是通过将x保持在新定义的不变流形上来确定的[Liu和Atluri(2011b)]。非线性von Karman板的几个数值示例,包括具有初始缺陷的板的后屈曲行为,显示出直接求解NAE的本算法比Dai,Paik和Atluri(2011a)的算法快几个数量级。 。这使得简单的全局Galerkin方法(作为有限元方法的替代方法)的兴起可以直接解决非线性结构力学问题而无需分段线性公式,这完全可行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号