首页> 外文期刊>Astrobiology >Galactic Cosmic Ray-Induced Radiation Dose on Terrestrial Exoplanets
【24h】

Galactic Cosmic Ray-Induced Radiation Dose on Terrestrial Exoplanets

机译:银河系宇宙射线在行星系外行星上的辐射剂量

获取原文
获取原文并翻译 | 示例
           

摘要

This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmosnheric deoth. and found that the latter is the decisive factor for the protection of a planetary biosphere.
机译:在过去的十年中,太阳系外行星的研究取得了巨大进步。现在,地面和空间仪器的观测越来越复杂,而系外行星的精度也越来越高。存在于居住区中的一类特别有趣的系外行星,被定义为恒星周围的区域,行星能够在其表面上支撑液态水。 M矮星周围的行星系统被认为是寻找太阳系以外生命的主要候选者。这样的行星很可能会被潮汐锁定,并具有近在宜居的区域。理论计算还表明,近系系外行星更有可能具有较弱的行星磁场,尤其是在超地球的情况下。由于此类系外行星的磁矩较弱,因此它们承受着高通量的银河系宇宙射线(GCR)。 GCR是天文学起源的高能粒子,撞击行星大气并产生高度渗透的次级粒子,包括介子。这些粒子中的一些到达行星表面并有助于辐射剂量。与磁场一起,控制辐射剂量的另一个因素是行星大气的深度。行星大气层的深度越高,次级粒子在表面上的通量就越低。如果次级粒子具有足够的能量,并且其通量足够高,则来自μ子的辐射也会影响地下区域,例如在火星的情况下。如果辐射剂量太高,维持地球上长期生物圈的机会就非常低。我们已经检查了GCR诱导的辐射剂量对行星磁场及其大气负压齿强度的依赖性。并发现后者是保护行星生物圈的决定性因素。

著录项

  • 来源
    《Astrobiology》 |2013年第10期|910-919|共10页
  • 作者单位

    Blue Marble Space Institute of Science Seattle, WA 98145-1561,Tata Institute of Fundamental Research, Mumbai, India;

    Tata Institute of Fundamental Research, Mumbai, India;

    Laboratoire de Physique et Chimie de l'Environnement et de l'Espace, LPC2E CNRS/Universite d'Orleans, Orleans, France,Station de Radioastronomie de Nancay, Observatoire de Paris, CNRS/INSU, Nancay, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Radiation; Radiation physics; Habitability; Habitable zone; Planetary atmospheres;

    机译:辐射;辐射物理学;适居性宜居区;行星大气;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号