首页> 外文期刊>Applied Surface Science >Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel
【24h】

Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel

机译:304型不锈钢形貌可控的超厚多孔阳极氧化物膜的制备与形成机理

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, pore initialization and further growth of metal-oxides-film (MOsF) with nanoporous structure on stainless steel (SS) substrate by electrochemical anodization have been investigated for controlling morphology of the porous MOsF. The competition between electric field assisted dissolution of the oxidized metals and anodization of SS substrate are analyzed by current-time response combined with the thickness variation of the barrier layer. The current density-time (i-t) curves show a drastic increase-a drastic drop-a gradual increase-stable shape while the barrier layer thickness presents a drastic increase-a gradual decrease-stable trend. Furthermore, the morphology (pore size, pore shape and film thickness) of the porous MOsF on SS substrate is strongly dependent on voltage drop across the barrier layer, anodizing duration and chemical constituents of the SS substrate. An electric field-assisted selective chemical dissolution model has been proposed to explain the formation of porous MOsF with cross-connected nanotube-shaped pores. An anodic etching model and an equivalent circuit of anodization system are built to theoretically analyze the formation mechanisms of pore shrinking (pore size varies from 53 +/- 7 nm at the top to 34 +/- 4 nm at the bottom) across the porous MOsF. Based on the achieved results, we are able to design an anodization scheme by step-potential tailoring to fabricate thick, porous MOsF with uniform nanostructures. By applying the step-potential tailoring anodization to keep a quasi-stable electric field across the barrier layer, ultra-thick (> 17 mu m), uniform, porous nanostructured MOsF on the SS substrates have been reported.
机译:在这项工作中,为控制多孔MOsF的形貌,已经研究了孔的初始化以及具有纳米孔结构的金属氧化物膜(MOsF)在不锈钢(SS)基底上通过电化学阳极氧化的进一步生长。通过电流-时间响应并结合阻挡层的厚度变化,分析了电场辅助的氧化金属溶解与SS衬底阳极氧化之间的竞争。电流密度-时间(i-t)曲线显示出急剧增加-急剧下降-逐渐增加-稳定的形状,而势垒层厚度呈现急剧增加-逐渐减少-稳定的趋势。此外,SS衬底上的多孔MOsF的形态(孔径,孔形状和膜厚)在很大程度上取决于势垒层两端的电压降,阳极氧化时间和SS衬底的化学成分。提出了电场辅助选择性化学溶解模型来解释具有交叉连接的纳米管形孔的多孔MOsF的形成。建立阳极蚀刻模型和阳极氧化系统的等效电路,以从理论上分析整个多孔结构上的细孔收缩(孔径从顶部的53 +/- 7 nm到底部的34 +/- 4 nm)的形成机理。财政部基于获得的结果,我们能够通过分步电位设计来设计阳极氧化方案,以制造具有均匀纳米结构的厚而多孔的MOsF。据报道,通过应用分步电位定制化阳极氧化技术来保持跨势垒层的准稳定电场,可以在SS基板上形成超厚(> 17μm),均匀,多孔的纳米结构MOsF。

著录项

  • 来源
    《Applied Surface Science》 |2020年第1期|144497.1-144497.8|共8页
  • 作者

  • 作者单位

    Univ South Eastern Norway Dept Microsyst IMS N-3184 Horten Norway;

    Taiyuan Univ Technol Coll Informat Engn Ctr Nano Energy & Devices Taiyuan 030024 Peoples R China|Taiyuan Univ Technol Inst Energy Innovat Taiyuan 030024 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Porous metal oxides films; Ultra-thick; Step-potential tailoring anodization;

    机译:多孔金属氧化物薄膜;超厚阶梯电位裁剪阳极氧化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号