首页> 美国卫生研究院文献>other >A MESO-SCALE LAYER-SPECIFIC STRUCTURAL CONSTITUTIVE MODEL OF THE MITRAL HEART VALVE LEAFLETS
【2h】

A MESO-SCALE LAYER-SPECIFIC STRUCTURAL CONSTITUTIVE MODEL OF THE MITRAL HEART VALVE LEAFLETS

机译:中枢心脏瓣叶的中尺度层特定结构本构模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fundamental to developing a deeper understanding of pathophysiological remodeling in mitral valve (MV) disease is the development of an accurate tissue-level constitutive model. In the present work, we developed a novel meso-scale (i.e. at the level of the fiber, 10–100 μm in length scale) structural constitutive model (MSSCM) for MV leaflet tissues. Due to its four-layer structure, we focused on the contributions from the distinct collagen and elastin fiber networks within each tissue layer. Requisite collagen and elastin fibrous structural information for each layer were quantified using second harmonic generation microscopy and conventional histology. A comprehensive mechanical dataset was also used to guide model formulation and parameter estimation. Furthermore, novel to tissue-level structural constitutive modeling approaches, we allowed the collagen fiber recruitment function to vary with orientation. Results indicated that the MSSCM predicted a surprisingly consistent mean effective collagen fiber modulus of 162.72 MPa, and demonstrated excellent predictive capability for extra-physiological loading regimes. There were also anterior-posterior leaflet-specific differences, such as tighter collagen and elastin fiber orientation distributions (ODF) in the anterior leaflet, and a thicker and stiffer atrialis in the posterior leaflet. While a degree of angular variance was observed, the tight valvular tissue ODF also left little room for any physically meaningful angular variance in fiber mechanical responses. Finally, a novel fibril-level (0.1 to 1 μm) validation approach was used to compare the predicted collagen fiber/fibril mechanical behavior with extant MV small angle X-ray scattering data. Results demonstrated excellent agreement, indicating that the MSSCM fully captures the tissue-level function. Future utilization of the MSSCM in computational models of the MV will aid in producing highly accurate simulations in non-physiological loading states that can occur in repair situations, as well as guide the form of simplified models for real-time simulation tools.
机译:深入了解二尖瓣(MV)疾病的病理生理重塑的基础是建立精确的组织水平本构模型。在当前的工作中,我们为MV小叶组织开发了一种新颖的介观尺度(即,在纤维水平上,长度尺度为10–100μm)结构本构模型(MSSCM)。由于其四层结构,我们专注于每个组织层中独特的胶原蛋白和弹性纤维网络的贡献。使用二次谐波产生显微镜和常规组织学对每层所需的胶原蛋白和弹性蛋白纤维结构信息进行定量。全面的机械数据集还用于指导模型制定和参数估计。此外,从新颖到组织水平的结构本构模型方法,我们允许胶原纤维募集功能随方向变化。结果表明,MSSCM预测出令人惊讶的一致的平均有效胶原纤维模量为162.72 MPa,并证明了超生理负荷方案的出色预测能力。前后小叶的特异性也不同,例如前小叶中较紧的胶原蛋白和弹性蛋白纤维取向分布(ODF),后小叶中较厚且较硬的心房。尽管观察到一定程度的角度变化,但紧密的瓣膜组织ODF也为光纤机械响应中任何在物理上有意义的角度变化留出了很少的空间。最后,使用一种新颖的原纤维水平(0.1至1μm)验证方法将预测的胶原纤维/原纤维力学行为与现有的MV小角度X射线散射数据进行比较。结果显示出极好的一致性,表明MSSCM完全捕获了组织水平的功能。 MSSCM在MV的计算模型中的未来利用将有助于在维修情况下可能发生的非生理负荷状态下进行高精度的模拟,并为实时模拟工具提供简化模型的形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号