首页> 外文学位 >Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves.
【24h】

Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves.

机译:人工和天然主动脉瓣膜的非线性多尺度各向异性材料和结构模型。

获取原文
获取原文并翻译 | 示例

摘要

New 3D multi-scale modeling approaches for the structural analysis of native and prosthetic Aortic Valves (AV) are investigated. Three different nonlinear hyperelastic constitutive material models for the mechanical behavior of the AV tissue are introduced. The first is the well-known Holzapfel hyperelastic, anisotropic and homogeneous model. The second model, termed the Collagen Fiber Network (CFN), is a heterogeneous model that recognizes the hyperelastic collagen and elastin layers using different layered finite elements. The third hyperelastic model is implemented using a new nonlinear micromechanical formulation of the High Fidelity Generalized Method of Cells (HFGMC) originally proposed by Aboudi. The latter two material models are heterogeneous and explicitly recognize the in-situ tissue constituents. Initially, a fullscale 3D structural model of a polymeric-based prosthetic AV model is studied. Time dependent transvalvular pressure measured from in-vitro experiments is applied to the AV structural model. This model is verified using deformation metrics obtained from images taken with high speed cameras during in-vitro experiments. The predictions from the proposed polymeric AV model are in good agreement with the test data. Next, the three tissue material models are examined in their ability to predict the anisotropic material behavior of porcine AV leaflet tissue. The Holzapfel model is calibrated from the overall anisotropic uni- and biaxial stress-strain data while the in-situ elastin and collagen constituents in the CFN and HFGMC models are calibrated to match the overall effective responses. Dynamic structural analysis is performed for the porcine AV with applied transvalvular pressure measured from repeated in-vitro tests conducted in this study. These experiments are performed using the Georgia Tech Left Heart simulator. They are used to measure the aortic and ventricular pressures, along with the kinematics of a grid of points placed on the leaflets. Principal stretches are computed from the experimental measurements and compared with the AV material-structural predictions. The proposed multi-scale modeling approach for the native AV is capable of predicting the structural behavior during the entire cardiac cycle without suffering from numerical convergence problems. Finally, new nonlinear micromechanical formulations based on the HFGMC method are developed and applied for various types of tissue materials including the human arterial wall layers and porcine AV leaflets. The proposed hyperelastic HFGMC model is compared to the CFN model and the Holzapfel models. It is shown that the HFGMC is an effective modeling approach for the arteries especially when the collagen fiber network has a periodic microstructure.
机译:研究了用于自然和人工主动脉瓣(AV)结构分析的新的3D多尺度建模方法。介绍了三种不同的AV组织力学行为的非线性超弹性本构材料模型。第一个是著名的Holzapfel超弹性,各向异性和均质模型。第二种模型称为胶原纤维网络(CFN),是一种异类模型,可以使用不同的分层有限元来识别超弹性胶原和弹性蛋白层。第三个超弹性模型是使用Aboudi最初提出的“高保真通用细胞方法”(HFGMC)的新的非线性微机械公式实现的。后两种材料模型是异质的,可以明确识别原位组织成分。最初,研究了基于聚合物的假体AV模型的全尺寸3D结构模型。通过体外实验测得的随时间变化的跨瓣压力被应用于AV结构模型。使用体外实验中从高速相机拍摄的图像获取的变形量度,可以验证该模型。所提出的聚合物AV模型的预测与测试数据非常吻合。接下来,检查了三种组织材料模型预测猪AV小叶组织的各向异性材料行为的能力。 Holzapfel模型是根据整体各向异性的单轴和双轴应力-应变数据进行校准的,而CFN和HFGMC模型中的现场弹性蛋白和胶原成分则进行了校准以匹配总体有效响应。对猪AV进行动态结构分析,并从本研究中进行的反复体外试验中测量所施加的跨瓣压力。这些实验是使用Georgia Tech Left Heart模拟器进行的。它们用于测量主动脉和心室压力,以及放置在传单上的点状网格的运动学。主要拉伸量是根据实验测量值计算得出的,并与AV材料的结构预测值进行了比较。针对天然AV提出的多尺度建模方法能够在整个心动周期中预测结构行为,而不会出现数值收敛问题。最后,开发了基于HFGMC方法的新型非线性微机械配方,并将其应用于各种类型的组织材料,包括人动脉壁层和猪AV小叶。将拟议的超弹性HFGMC模型与CFN模型和Holzapfel模型进行了比较。结果表明,HFGMC是一种有效的动脉建模方法,尤其是在胶原纤维网络具有周期性微结构时。

著录项

  • 作者

    Kim, Hee Sun.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号