首页> 美国卫生研究院文献>Scientific Reports >Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning
【2h】

Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning

机译:使用图论和机器学习量化断裂系统中的拓扑不确定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fractured systems are ubiquitous in natural and engineered applications as diverse as hydraulic fracturing, underground nuclear test detection, corrosive damage in materials and brittle failure of metals and ceramics. Microstructural information (fracture size, orientation, etc.) plays a key role in governing the dominant physics for these systems but can only be known statistically. Current models either ignore or idealize microscale information at these larger scales because we lack a framework that efficiently utilizes it in its entirety to predict macroscale behavior in brittle materials. We propose a method that integrates computational physics, machine learning and graph theory to make a paradigm shift from computationally intensive high-fidelity models to coarse-scale graphs without loss of critical structural information. We exploit the underlying discrete structure of fracture networks in systems considering flow through fractures and fracture propagation. We demonstrate that compact graph representations require significantly fewer degrees of freedom (dof) to capture micro-fracture information and further accelerate these models with Machine Learning. Our method has been shown to improve accuracy of predictions with up to four orders of magnitude speedup.
机译:断裂系统在自然和工程应用中无处不在,例如水力压裂,地下核试验检测,材料的腐蚀破坏以及金属和陶瓷的脆性破坏。微观结构信息(断裂尺寸,方向等)在控制这些系统的主导物理方面起着关键作用,但只能通过统计手段知道。当前的模型在这些较大的规模上忽略或理想化了微观信息,因为我们缺少一个框架来有效地整体利用它来预测脆性材料的宏观行为。我们提出了一种将计算物理学,机器学习和图论相结合的方法,以使范式从计算密集型高保真模型转变为粗略图,而不会丢失关键的结构信息。考虑到流过裂缝和裂缝扩展的情况,我们在系统中利用了裂缝网络的底层离散结构。我们证明紧凑的图形表示所需的自由度(dof)大大减少,以捕获微断裂信息并通过机器学习进一步加速这些模型。我们的方法已显示出最多可以提高四个数量级的速度来提高预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号