首页> 美国卫生研究院文献>Biophysical Journal >Squeezing Protein Shells: How Continuum Elastic Models Molecular Dynamics Simulations and Experiments Coalesce at the Nanoscale
【2h】

Squeezing Protein Shells: How Continuum Elastic Models Molecular Dynamics Simulations and Experiments Coalesce at the Nanoscale

机译:挤压蛋白质壳:纳米的连续弹性模型分子动力学模拟和实验如何融合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The current rapid growth in the use of nanosized particles is fueled in part by our increased understanding of their physical properties and ability to manipulate them, which is essential for achieving optimal functionality. Here we report detailed quantitative measurements of the mechanical response of nanosized protein shells (viral capsids) to large-scale physical deformations and compare them with theoretical descriptions from continuum elastic modeling and molecular dynamics (MD). Specifically, we used nanoindentation by atomic force microscopy to investigate the complex elastic behavior of Hepatitis B virus capsids. These capsids are hollow, ∼30 nm in diameter, and conform to icosahedral (5-3-2) symmetry. First we show that their indentation behavior, which is symmetry-axis-dependent, cannot be reproduced by a simple model based on Föppl-von Kármán thin-shell elasticity with the fivefold vertices acting as prestressed disclinations. However, we can properly describe the measured nonlinear elastic and orientation-dependent force response with a three-dimensional, topographically detailed, finite-element model. Next, we show that coarse-grained MD simulations also yield good agreement with our nanoindentation measurements, even without any fitting of force-field parameters in the MD model. This study demonstrates that the material properties of viral nanoparticles can be correctly described by both modeling approaches. At the same time, we show that even for large deformations, it suffices to approximate the mechanical behavior of nanosized viral shells with a continuum approach, and ignore specific molecular interactions. This experimental validation of continuum elastic theory provides an example of a situation in which rules of macroscopic physics can apply to nanoscale molecular assemblies.
机译:当前对纳米颗粒用途的快速增长,部分原因是由于我们对它们的物理性质和操纵它们的能力的加深了解,这对于实现最佳功能至关重要。在这里,我们报告了对纳米级蛋白质壳(病毒衣壳)对大规模物理变形的机械响应的详细定量测量,并将其与来自连续弹性建模和分子动力学(MD)的理论描述进行了比较。具体来说,我们通过原子力显微镜使用纳米压痕技术研究了乙型肝炎病毒衣壳的复杂弹性行为。这些衣壳是空心的,直径约30 nm,并符合二十面体(5-3-2)对称性。首先,我们证明了它们的压痕行为是对称轴相关的,不能通过基于Föppl-vonKármán薄壳弹性且具有五个顶点作为预应力错位的简单模型来复制。但是,我们可以使用三维,地形详细的有限元模型正确描述所测得的非线性弹性和与方向有关的力响应。接下来,我们表明,即使没有在MD模型中拟合力场参数,粗粒度MD模拟也可以与我们的纳米压痕测量产生良好的一致性。这项研究表明,可以通过两种建模方法正确描述病毒纳米颗粒的材料特性。同时,我们表明,即使对于较大的变形,也可以使用连续介质方法近似估算纳米级病毒壳的机械行为,而忽略特定的分子相互作用。连续弹性理论的这一实验验证为宏观物理规则可应用于纳米级分子组装的情况提供了一个例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号