首页> 中文期刊> 《中国组织工程研究》 >三维打印制备掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架

三维打印制备掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架

         

摘要

BACKGROUND: Three-dimensional (3D) printing technique has showed unparalleled advantages in the field of tissue engineering scaffold preparation because of its outstanding merits of convenience, efficiency, controllability and ability to construct complex shapes.OBJECTIVE: To fabricate Fe-containing mesoporous calcium-silicate (MCS) /poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) composite scaffolds using the 3D printing technique and to test the characterization and cellular biocompatibility of the composite scaffolds.METHODS: Four groups of Fe-containing MCS/PHBHHx composite scaffolds were fabricated using 3D printing technique. The molar percentage of Fe in these four groups was 0%, 5%, 10%, 15%, respectively and they were marked as 0Fe-MCS/PHBHHx, 5Fe-MCS/PHBHHx, 10Fe-MCS/PHBHHx and 15Fe-MCS/PHBHHx. The scanning electron microscopy was used to observe the microstructure of the scaffolds after being soaked in the simulated body fluid.Osteoblast cell lines MC3T3-E1 were seeded on these four groups of scaffolds as well. Cell counting kit-8 method was adopted to test the cell proliferation at 1, 3, 7 days of culture. Intracellular alkaline phosphatase activity was tested at 7 and 14 days of culture.RESULTS AND CONCLUSION: (1) Compared with the scaffolds with no soaking process, spherical particles were formed on the scaffolds because of mineralization after soaking 3 days in the simulated body fluid. (2) At 1 day of culture,there was no difference in cell proliferation among the four groups. At 3 days of culture, the proliferation rate of the 15Fe-MCS/PHBHHx scaffold was remarkably higher than that of the rest three groups (P < 0.05). At 7 days of culture,the proliferation rate was significantly higher in the 10Fe-MCS/PHBHH and 15Fe-MCS/PHBHHx scaffolds than the 0Fe-MCS/PHBHH scaffold (P < 0.05), as well as significantly higher in the 15Fe-MCS/PHBHHx scaffold than the 10Fe-MCS/PHBHH scaffold (P < 0.05). (3) At 7 days of culture, no difference in alkaline phosphatase activity could be found among these four groups of scaffolds; however, at 14 days, the 5Fe-MCS/PHBHHx, 10Fe-MCS/PHBHHx and 15Fe-MCS/PHBHHx scaffolds exhibited an enhanced alkaline phosphatase activity compared with the 0Fe-MCS/PHBHHx scaffold. Meanwhile, the 15Fe-MCS/PHBHHx showed the highest alkaline phosphatase activity.These findings indicate that the MCS/PHBHH scaffolds containing Fe could promote the proliferation and osteogenic differentiation of the MC3T3-E1 cells.%背景:由于三维打印技术便捷、快速、操控性强的突出优点及可构建复杂形状的能力,在组织工程支架制备领域表现出无可比拟的优势.目的:利用三维打印技术制备掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架,并进行表征及细胞相容性实验.方法:利用三维打印技术制备含铁摩尔百分比分别为0%,5%,10%,15%的掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架,分别记为0Fe-MCS/PHBHHx、5Fe-MCS/PHBHHx、10Fe-MCS/PHBHHx及15Fe-MCS/PHBHHx;扫描电镜观察支架浸泡于模拟体液前后的微观结构.将成骨细胞株MC3T3-E1分别接种于4组支架上,培养1,3,7 d,CCK-8法检测细胞增殖;培养7,14 d,检测细胞碱性磷酸酶活性.结果与结论:①与浸泡前相比,在模拟体液中浸泡3d后,各组支架上出现了由矿化而形成的球形颗粒;②培养第1天,4组间细胞增殖无差异;培养第3天,15Fe-MCS/PHBHHx组细胞增殖显著高于其他3组(P<0.05);培养第7天,10Fe-MCS/PHBHHx组、15Fe-MCS/PHBHHx组细胞增殖明显高于0Fe-MCS/PHBHHx组(P<0.05),且15Fe-MCS/PHBHHx组高于10Fe-MCS/PHBHHx组(P<0.05);③培养第7天,4组细胞碱性磷酸酶活性无差异;培养第14天,5Fe-MCS/PHBHHx组、10Fe-MCS/PHBHHx组、15Fe-MCS/PHBHHx组细胞碱性磷酸酶活性明显高于0Fe-MCS/PHBHHx组(P<0.05),15Fe-MCS/PHBHHx组支架显著高于其他3组(P<0.05);④结果表明,掺铁介孔硅酸钙/3-羟基丁酸-3-羟基己酸共聚酯复合支架具有促进细胞增殖和成骨分化的能力.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号