首页> 外文学位 >Quantum Electronic Interference in Nano Amorphous Silicon and Other Thin Film Resistance Memory
【24h】

Quantum Electronic Interference in Nano Amorphous Silicon and Other Thin Film Resistance Memory

机译:纳米非晶硅和其他薄膜电阻存储器中的量子电子干扰

获取原文
获取原文并翻译 | 示例

摘要

This thesis describes conductivity in amorphous semiconductors and insulators---some doped with metals, in which elastic electrons can random walk across a transport length of ~10 nm. At low temperatures, back diffusion of coherent electrons causes constructive quantum interference that leads to reduced diffusivity/conductivity. Rich physics also arises in this so-called weak-localization (WL) regime from electron-phase mutilation by spin-orbit interaction (weak-antilocalization or WAL) and magnetic modulation, and from Friedel-oscillation-enhanced backscattering and Zeeman splitting (electron-electron-interaction or EEI). Conductivity is analyzed by a new tool to eliminate contact resistance without using the four-point-probe method.;The Aharonov-Bohm oscillation in magnetoresistance affords the cleanest evidence of interference, seen in amorphous HfO2 and Al2O 3, each containing a single 6--7 nm conductive loop. The loop is atomically thin and has no in-loop path dispersion, which allows the oscillation to persist with uncharacteristically low attenuation. In amorphous Si, quantum conductivity correction and magnetoresistance are universally exhibited in multiple states and multiple samples. But doping amorphous Si3N 4 with Pt creates a novel feature: a sharp resistance maximum at Tmax below which the WAL-mediated spin-orbit interaction completely dominates over the spin-insensitive WL. This interaction can further quench the coherent length to keep it commensurate with the magnetic length, thus permitting the EEI-directed magnetoresistance to develop to unprecedented strength. Reduced HfO2 and Al2O3 also feature the same characteristics, albeit in one-dimension conduction.;Ubiquitous to amorphous nano conductors is their strong electron-phonon interaction. It imparts electrons with up to 100x heavier mass, which is translated into up to 100x reduction in diffusivity. Yet at low enough temperatures, electron diffusion can fully saturate the 10 nm transport length in all our samples. This prevents weak localization from crossover to strong localization, so the nano amorphous devices remain conductive down to 0K. Yet under a critical voltage ~ 1 V, they can trap injected electrons at locally soft spots and stabilize them by bond relaxation; in doing so they promptly switch to the insulator state. Thanks to these attributes, which are reversible, our devices are all excellent resistance-switching non-volatile memory.
机译:本论文描述了非晶半导体和绝缘体中的导电性,其中一些掺杂有金属,其中弹性电子可以随机游走约10 nm的传输长度。在低温下,相干电子的反向扩散会引起相长的量子干涉,从而导致扩散率/电导率降低。在这种所谓的弱局域化(WL)机制中,也发生了自旋轨道相互作用(弱反局域化或WAL)和磁调制造成的电子相破坏,以及因Friedel振荡增强的反向散射和塞曼分裂(电子)产生了丰富的物理学。 -电子相互作用或EEI)。使用新工具分析电导率,无需使用四点探针法即可消除接触电阻。;磁阻中的Aharonov-Bohm振荡提供了最清晰的干扰证据,在无定形HfO2和Al2O 3中均可见,它们各自包含一个6- -7 nm导电环。环路在原子上很薄,并且没有环路内的路径分散,这使得振荡得以持续,并具有异常低的衰减。在非晶硅中,量子电导率校正和磁阻普遍存在于多种状态和多个样品中。但是,用Pt掺杂非晶Si3N 4会产生一个新颖的特征:在Tmax处有一个极大的电阻最大值,在该最大值以下,WAL介导的自旋轨道相互作用完全在对自旋不敏感的WL上占主导地位。这种相互作用可以进一步消除相干长度,以使其与磁长度保持一致,从而使EEI定向的磁阻发展到前所未有的强度。还原后的HfO2和Al2O3也具有相同的特征,尽管是一维传导。;无定形纳米导体普遍具有很强的电子-声子相互作用。它赋予电子重达100倍的质量,转化为扩散率的最高达100倍的降低。然而,在足够低的温度下,电子扩散可以使我们所有样品中的10 nm传输长度完全饱和。这样可以防止弱定位从交叉过渡到强定位,因此纳米非晶器件在低至0K时仍保持导电性。然而,在大约1 V的临界电压下,它们可以将注入的电子捕获在局部的软点处,并通过键松弛来稳定它们。这样,他们迅速切换到绝缘子状态。由于这些属性是可逆的,因此我们的设备都是出色的电阻切换非易失性存储器。

著录项

  • 作者

    Lu, Yang.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Materials science.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号