首页> 外文学位 >Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient HWTC apparatus.
【24h】

Development of steady-state, parallel-plate thermal conductivity apparatus for poly-nanofluids and comparative measurements with transient HWTC apparatus.

机译:开发用于聚纳米流体的稳态平行板导热装置,并与瞬态HWTC装置进行比较测量。

获取原文
获取原文并翻译 | 示例

摘要

A steady-state, Parallel-Plate Thermal Conductivity (PPTC) Apparatus has been developed in order to determine the thermal conductivity of these POLY-nanofluids. The apparatus consists of a heater assembly above the test fluid specimen and a chiller assembly below the test fluid specimen. This creates a temperature difference which is measured by calibrated thermocouples imbedded in the parallel plates. This temperature difference is then used, along with the heating power, to calculate the thermal conductivity of the test fluid specimen. This scheme, along with a sufficiently thin test fluid specimen thickness, retards convection in the test fluid specimen and creates a heat transfer mechanism consisting virtually of heat conduction mode. The apparatus is also adequately insulated, restricting nearly all heat conduction to the axial direction.;The PPTC Apparatus has been fully calibrated in order to insure accurate and precise measurement results. All thermocouples used have been calibrated against a precise RTD, reducing thermocouple uncertainty to 0.12°C. A correction factor has been developed in order to minimize errors occurring in fluid thermal conductivity measurements due to heat loss through the top of the apparatus. A conservative uncertainty analysis has been performed for the PPTC Apparatus using the method of propagation of error, resulting in an uncertainty of approximately 8%. A steady-state condition for the PPTC Apparatus has been developed through calibration of the PPTC Apparatus using distilled water.;This PPTC Apparatus has been used to explore the effects of polymer additives on the thermal conductivity of POLY-nanofluids. Comparative measurements have been made using the previously developed HWTC Apparatus (Simham, 2008) in order to explore the possible influence of different measurement techniques on the thermal conductivity results regarding complex POLY-nanofluids. Nanofluids containing silica and alumina nanoparticles have been prepared to satisfy the zeta potential vs. pH relationship in order to achieve suspension stability (Singh et al., 2005). Polymer additives including the surfactant polyvinylpyrrolidone, or PVP (for stability enhancement), and polyacrylamide (for turbulent drag reduction) have been added to the nanofluids.;The resulting hybrid fluids, dubbed POLY-nanofluids (Kostic, 2006), exhibit thermal conductivity enhancements when compared with the base fluid (distilled water). On average, the thermal conductivity enhancements measured by the HWTC Apparatus are about 3 times greater than the thermal conductivity enhancements measured by the PPTC Apparatus. This difference suggests that the measurement technique has a substantial impact on the observed thermal conductivity enhancement of both standard nanofluids and POLY-nanofluids over the base fluid. In addition, the POLY-nanofluid suspension might degrade during the lengthy steady-state thermal conductivity measurements using the PPTC apparatus. The results obtained using the PPTC Apparatus are similar to those predicted by simple mixture theory.;The average thermal conductivity enhancement over the base fluid exhibited by the silica POLY-nanofluids is 1.3% when measured using the PPTC Apparatus and 4.4% when measured using the HWTC Apparatus. The average thermal conductivity enhancement over the base fluid exhibited by the alumina POLY-nanofluids is 3.8% when measured using the PPTC Apparatus and 11.4% when measured using the HWTC Apparatus. The effects of the polymer additives PVP and polyacrylamide on the silica nanofluids can be classified as statistically insignificant. The thermal conductivity enhancement over the standard alumina nanofluid exhibited by the alumina POLY-nanofluids suggest that a small concentration of PVP can be beneficial to alumina nanofluid thermal conductivity, while a small concentration of polyacrylamide can have a negative effect on thermal conductivity. The viscosity of the POLY-nanofluids was also explored. The POLY-nanofluids containing PVP exhibited a slight increase in viscosity when compared to the base fluid, while the POLY-nanofluids containing polyacrylamide exhibited a large increase in viscosity when compared to the base fluid. (Abstract shortened by UMI.)
机译:为了确定这些POLY纳米流体的热导率,已经开发了一种稳态的平行板热导率(PPTC)设备。该设备由测试流体样品上方的加热器组件和测试流体样品下方的冷却器组件组成。这会产生一个温差,该温差由嵌入在平行板上的校准热电偶测量。然后将这个温度差与加热功率一起用于计算测试流体样品的导热率。该方案连同足够薄的测试流体样本厚度一起,延迟了测试流体样本中的对流,并建立了实际上由热传导模式组成的传热机制。该设备还具有充分的绝缘性,几乎将所有热量都限制在轴向上。; PPTC设备已经过充分校准,以确保获得准确准确的测量结果。所有使用的热电偶均已根据精确的RTD进行了校准,从而将热电偶的不确定度降低至0.12°C。为了最小化由于通过设备顶部的热损失而在流体导热率测量中出现的误差,已经开发出校正因子。已使用误差传播方法对PPTC设备进行了保守的不确定性分析,结果不确定性约为8%。通过使用蒸馏水对PPTC装置进行校准,已开发出PPTC装置的稳态条件。该PPTC装置已用于探索聚合物添加剂对POLY纳米流体导热系数的影响。使用以前开发的HWTC装置(Simham,2008)进行了比较测量,以探讨不同测量技术对复杂POLY-纳米流体的热导率结果的可能影响。为了达到悬浮液的稳定性,已经制备了含有二氧化硅和氧化铝纳米粒子的纳米流体以满足ζ电势与pH的关系(Singh等人,2005)。已向纳米流体中添加了聚合物添加剂,包括表面活性剂聚乙烯吡咯烷酮或PVP(用于增强稳定性)和聚丙烯酰胺(用于减少湍流阻力);所得混合流体称为POLY-纳米流体(Kostic,2006),具有导热性与基础液(蒸馏水)相比。平均而言,由HWTC仪器测得的热导率提高量大约是由PPTC仪器测得的热导率提高量的三倍。这种差异表明,测量技术对观察到的标准纳米流体和POLY-纳米流体相对于基础流体的热导率提高具有重大影响。此外,在使用PPTC设备进行长时间的稳态热导率测量期间,POLY-纳米流体悬浮液可能会降解。使用PPTC仪器获得的结果与简单混合理论所预测的结果相似。使用PPTC仪器测量时,二氧化硅POLY-纳米流体在基础流体上的平均导热系数提高了1.3%,而使用PPTC仪器测量了4.4%。 HWTC设备。使用PPTC仪器测量时,氧化铝POLY-纳米流体在基础流体上的平均导热系数提高为3.8%,使用HWTC仪器测量时为11.4%。可以将聚合物添加剂PVP和聚丙烯酰胺对二氧化硅纳米流体的影响归为统计上无关紧要的。氧化铝POLY-纳米流体所显示的相对于标准氧化铝纳米流体的热导率提高表明,低浓度的PVP可以有益于氧化铝纳米流体的热导率,而低浓度的聚丙烯酰胺可能对热导率产生负面影响。还研究了POLY-纳米流体的粘度。与基础流体相比,含有PVP的POLY-纳米流体的粘度略有增加,而与基础流体相比,含有聚丙烯酰胺的POLY-纳米流体的粘度却大大增加。 (摘要由UMI缩短。)

著录项

  • 作者

    Walleck, Casey J.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号