首页> 外文学位 >Bulk growth of semiconductor crystals in a magnetic field: A study of dopant transport.
【24h】

Bulk growth of semiconductor crystals in a magnetic field: A study of dopant transport.

机译:磁场中半导体晶体的整体生长:掺杂剂传输的研究。

获取原文
获取原文并翻译 | 示例

摘要

When semiconductor crystals are grown from a body of liquid (melt), the turbulent melt motion produces spatial oscillations of the dopant concentration in the crystal, which are called striations or microsegregation. Dopants are elements which are added to the melt in order to change the electrical or optical properties of the crystal. The acceptable variation of the dopant concentration in the striations has decreased dramatically as the size of devices in the integrated circuits produced on single-crystal wafers has decreased. Since molten semiconductors are good electrical conductors, a weak magnetic field is sufficient to eliminate turbulence and other unsteadiness in the melt motion. Unfortunately the elimination of turbulent mixing may lead to a large-scale variation of the crystal's dopant concentration, which is called macrosegregation. An accurate predictive tool is needed in order to tailor the magnetic field and to adjust other process parameters so that the crystal has both microscopic and macroscopic uniformity in its dopant concentration. This thesis presents one such predictive tool.;Our model for the unsteady transport of a dopant during the entire period of time required to grow a crystal assumes that the externally applied magnetic field is sufficiently strong that inertial effects and convective heat transfer are negligible. We divide the semiconductor melt into (1) mass-diffusion boundary layers where convective and diffusive mass transfer are comparable, and (2) a core region where diffusion is negligible, so that the concentration of each fluid particle is constant. A Lagrangian description of motion is used to track each fluid particle during its transits across the core between diffusion layers. The dopant distribution in each layer depends on the concentrations of all fluid particles which are entering this layer. The dopant distribution is very non-uniform throughout the melt and is far from the instantaneous steady state at each stage during crystal growth. Our transient model is the first model to predict the dopant distribution in the entire crystal. The predictions of this asymptotic model are confirmed by a numerical solution to the full mass transport equation.
机译:从液体(熔体)中生长出半导体晶体时,湍流的熔体运动会产生晶体中掺杂剂浓度的空间振荡,这称为条纹或微偏析。掺杂剂是添加到熔体中以改变晶体的电学或光学性质的元素。随着在单晶晶片上生产的集成电路中器件尺寸的减小,条纹中掺杂剂浓度的可接受的变化已显着减小。由于熔融半导体是良好的电导体,因此弱磁场足以消除湍流和熔融运动中的其他不稳定性。不幸的是,消除湍流混合可能会导致晶体掺杂剂浓度发生大规模变化,这被称为宏观偏析。为了调整磁场和调整其他工艺参数,需要一种准确的预测工具,以使晶体的掺杂剂浓度具有微观和宏观的均匀性。本论文提供了一种这样的预测工具。我们在生长晶体所需的整个时间段内,非稳定地传输掺杂物的模型假定外部施加的磁场足够强,以至于惯性效应和对流换热都可以忽略不计。我们将半导体熔体分为(1)对流和扩散传质相当的质量扩散边界层,和(2)扩散可忽略的核心区域,因此每个流体粒子的浓度恒定。拉格朗日运动描述用于跟踪每个流体粒子在扩散层之间穿越核的过程中。每层中的掺杂剂分布取决于进入该层的所有流体颗粒的浓度。掺杂物在整个熔体中的分布非常不均匀,并且远离晶体生长过程中每个阶段的瞬时稳态。我们的瞬态模型是第一个预测整个晶体中掺杂剂分布的模型。这个渐近模型的预测是通过对整个质量输运方程的数值解来证实的。

著录项

  • 作者

    Ma, Nancy.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号