首页> 外文学位 >Low power and process variation aware SRAM and Cache design fault tolerance in SRAM circuit, architecture and organization.
【24h】

Low power and process variation aware SRAM and Cache design fault tolerance in SRAM circuit, architecture and organization.

机译:低功耗和工艺变化感知型SRAM和Cache在SRAM电路,架构和组织中的设计容错能力。

获取原文
获取原文并翻译 | 示例

摘要

Dealing with SRAMs and Caches reliability and power consumption issues in the nano scaled technology nodes has proven to be a major challenge. On one side the increased gate and sub-threshold leakage of the memory cells combined with the memory hungry nature of SOCs (memory structures account for major portion of silicon real state) has made the power consumption of the caches (specially that of leakage power) to be comparable or even dominating in comparison with the SOC dynamic power consumption. On the other hand the dense structure of the memories and the usage of minimum sized transistors have raised serious reliability issues in nano-scaled geometries where the parametric process variation poses strong spread in the physical and in turn logical characteristic of the transistors devices.;Problem becomes more complicate since the reliability and the power consumption of the memories could not be addressed independently. Voltage Scaling is the most effective knob to control both dynamic and leakage power consumption as both leakage and dynamic power consumption are reduced super linearly with linear reduction in the supplied voltage. Voltage scaling, when applied to the memories, exponentially increases the memory cell failure probability, severely limiting the application of these techniques. Chapter 1 of this dissertation provide a trough background review of the effect of voltage scaling on the reliability of the memories and characterizes the memory behavior when operated at different voltages and frequencies. Chapters 2 to 5 explain different solutions for realizing voltage scalable SRAM/Cache architectures with great tolerance against reliability issues posed by process variation. Each organization/architecture address the reliability issue from a different perspective, covering a range of circuit technique (in CP-Cache) to organizational and architectural techniques (such as in VTD-Cache and IDC-Cache).
机译:在纳米级技术节点中处理SRAM和缓存的可靠性和功耗问题已被证明是一个重大挑战。一方面,存储单元栅极和亚阈值泄漏的增加与SOC的存储器饥饿特性(存储器结构占硅真实状态的主要部分)相结合,使得高速缓存的功耗(特别是泄漏功率)与SOC动态功耗相比可比甚至占主导地位。另一方面,存储器的密集结构和最小尺寸晶体管的使用在纳米级几何结构中引起了严重的可靠性问题,其中参数工艺变化在晶体管器件的物理特性和逻辑特性中造成了很大的扩散。由于不能独立处理存储器的可靠性和功耗,因此变得更加复杂。电压缩放是控制动态功耗和泄漏功耗的最有效旋钮,因为随着供电电压的线性降低,泄漏和动态功耗均呈超线性降低。电压缩放在应用于内存时会成倍增加内存单元故障的可能性,从而严重限制了这些技术的应用。本文的第一章对电压缩放对存储器可靠性的影响进行了深入的背景回顾,并描述了在不同电压和频率下工作时存储器的行为。第2章至第5章介绍了用于实现电压可伸缩SRAM / Cache架构的不同解决方案,这些架构对过程变化引起的可靠性问题具有很大的容忍度。每个组织/架构都从不同的角度解决可靠性问题,涵盖了一系列电路技术(在CP-Cache中)到组织和架构技术(例如在VTD-Cache和IDC-Cache中)。

著录项

  • 作者

    Sasan, Avesta.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Computer.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号