首页> 外文学位 >Mechanical properties of lightweight metals from first principles orbital-free density functional theory.
【24h】

Mechanical properties of lightweight metals from first principles orbital-free density functional theory.

机译:从第一原理的无轨道密度泛函理论出发研究轻质金属的机械性能。

获取原文
获取原文并翻译 | 示例

摘要

Accurate quantum mechanics theory and a fast linear-scaling algorithm that OFDFT adopts can create a great synergy to understand underlying atomic-scale physics of material properties and to provide accurate predictions of mesoscale properties for novel materials. We employ OFDFT simulations to study mechanical properties of lightweight metals: FCC Al, HCP Mg, and BCC Mg-Li alloys. The accuracy of OFDFT is mainly governed by two approximations: an electron kinetic energy density functional (KEDF) and a local electron-ion pseudopotential (LPS). We propose and validate a new KEDF for semiconductors and a new LPS for Mg-Li alloys. First, we investigate dislocation structures in Al. OFDFT-optimized dislocation structures are consistent with an experimental estimation. We then calculate the Peierls stress (sigmap) of Al dislocations. We discover two possible screw dislocation structures (dissociated and undissociated), whose sigmaps differ by two orders of magnitude. This result may resolve the decades-long mystery in FCC metals regarding the two orders of magnitude discrepancy in sigmap measurements. Next, we investigate plastic properties of various slip systems in Mg. We propose that strong anisotropies in stacking fault energy surfaces, cross-slip of screw dislocations to basal planes, and the compact nature of edge dislocations on non-basal planes are responsible for Mg's limited ductility. We then explicitly calculate the sigma p of Mg dislocations on the basal and prismatic slip planes. OFDFT-calculated sigma ps are in excellent agreement with experiments. We predict a basal edge dislocation can move 59 times more readily than a prismatic one, which gives rise to the characteristically large anisotropy in Mg's plasticity. Next, we study plasticity of novel BCC Mg-Li alloys as potential lightweight metals. We propose alloys with 31-50 at.% Li can maximize potential strength while increasing ductility compared to Mg, with their sigmaps predicted to be ~0.3 GPa. Finally, we propose a new KEDF for semiconductors via enhancing the semilocal vonWeizsacker functional in the Wang-Govind-Carter KEDF. The enhancement factor is strongly correlated with the extent to which electron density is localized. Our new KEDF shows a clear improvement in accuracy, transferability, and efficiency compared to previous OF KEDFs. This result holds great promise for large-scale OFDFT simulations for semiconductors.
机译:OFDFT所采用的准确的量子力学理论和快速的线性缩放算法可以产生巨大的协同作用,从而了解潜在的原子尺度的材料特性物理学,并提供对新材料的中尺度特性的准确预测。我们采用OFDFT模拟研究轻质金属的力学性能:FCC Al,HCP Mg和BCC Mg-Li合金。 OFDFT的精度主要由两个近似值决定:电子动能密度函数(KEDF)和局部电子离子pseudo势(LPS)。我们提出并验证了一种用于半导体的新型KEDF和一种用于Mg-Li合金的新型LPS。首先,我们研究Al中的位错结构。 OFDFT优化的位错结构与实验估计一致。然后,我们计算Al位错的Peierls应力(sigmap)。我们发现了两种可能的螺钉错位结构(分离的和未分离的),其σ差相差两个数量级。这一结果可能解决了有关sigmap测量中两个数量级差异的FCC金属长达数十年的谜团。接下来,我们研究镁中各种滑移系统的塑性。我们认为,堆叠断层能量表面的强各向异性,螺杆位错到基面的交叉滑动以及非基面上边缘位错的致密性质是镁有限的延展性的原因。然后,我们在基底和棱柱滑动面上显式计算Mg位错的σp。 OFDFT计算的σps与实验非常吻合。我们预测基底边缘位错比棱柱形错位容易移动59倍,这会导致Mg的可塑性具有特征性的大各向异性。接下来,我们研究新型BCC Mg-Li合金作为潜在轻质金属的可塑性。我们建议,与Mg相比,具有31-50 at。%Li的合金可以最大限度地提高潜在强度,同时增加延展性,其σ预计为〜0.3 GPa。最后,我们通过增强Wang-Govind-Carter KEDF中的半局部vonWeizsacker功能,为半导体提出了一种新的KEDF。增强因子与电子密度的局部化程度密切相关。与以前的OF KEDF相比,我们的新KEDF在准确性,可转移性和效率上都有明显的提高。这一结果对于半导体的大规模OFDFT仿真具有广阔的前景。

著录项

  • 作者

    Shin, Ilgyou.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Materials Science.;Physics Condensed Matter.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 266 p.
  • 总页数 266
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号