首页> 外文学位 >The effect of temperature on fatty acid desaturase gene expression and fatty acid composition in developing soybean seeds.
【24h】

The effect of temperature on fatty acid desaturase gene expression and fatty acid composition in developing soybean seeds.

机译:温度对发育中大豆种子中脂肪酸脱氢酶基因表达和脂肪酸组成的影响。

获取原文
获取原文并翻译 | 示例

摘要

Soybean [Glycine max (L.) Merr.] is the largest oilseed crop produced and consumed worldwide. As an oilseed, soybean provides high quality protein for livestock and poultry feed, and the oil is used extensively in the cooking and food manufacturing industries across the world. Soybean producers have targeted improved oil traits as a priority area of research to enhance the market share of U.S. soybean. Soybean seed is approximately 18% oil and standard commodity soybean oil is a mixture of five fatty acids; palmitic (11%), stearic (4%), oleic (22%), linoleic (53%), and linolenic (8%). Oils high in monounsaturated fatty acids possess increased oxidative stability which negates the need for hydrogenation and eliminates the production of trans-fats. Food products containing trans-fatty acids are currently a major health concern and as such, soybean breeders and molecular geneticists have been challenged to efficiently alter the fatty acid composition to meet the specific needs of the various industries. Fatty acid desaturases are enzymes responsible for the insertion of double bonds (normally in the Z or cis conformation) into alkyl chains, following the abstraction of two hydrogen atoms. The physical properties and nutritional value of many animal and plant storage lipids are determined by desaturases. The quality of soybean oil is of paramount importance both economically and from a nutritional stand point and depends to a large extent on the ratio of polyunsaturated to monounsaturated fatty acid. Temperature also plays an important role in the final lipid content of oil seed plants. In this study, we designed and used gene-specific primers to the following fatty acid desaturases; stearoyl-ACP desaturase (SACPD), omega-6 fatty acid desaturase (FAD2-1), and omega-3 fatty acid desaturase (FAD3), to characterize soybean varieties. We further determined the effect of temperature on the expression of these desaturase genes by quantifying transcript accumulation at various stages of seed development.;We surveyed 51 soybean lines and found each contained two SACPD genes (A and B) with distinguishing amino acid variations in exon 3. The varieties also had two FAD2-1 (A and B) and three FAD3 (A, B, C) genes. Soluble Delta9 stearoyl-ACP desaturases introduce the first double bond into stearoyl-ACP (18:0-ACP) between carbons 9 and 10 to produce oleoyl-ACP (18:1Delta9 -ACP). Microsomal o-6 desaturase catalyzes the first extra-plastidial desaturation and converts oleic acid to linoleic acid. Microsomal o-3 fatty acid desaturases (FAD3s) catalyze the insertion of a third double bond into the linoleic (18:2) acid precursor to produce linolenic (18:3) acid.;An analysis of the effect of cold (22/18°C), normal (26/22°C), and warm (30/26°C) temperatures on the transcript accumulation of these desaturase genes revealed some differences. Transcript accumulation of SACPD-A and -B decreased by up to 69% with increasing temperature in cultivars Dare, A6 (a high stearate line), and N01-3544 (a mid-oleic line). The oleic acid content of these three lines was inversely related to the levels of SACPD expression at the warm and cold temperatures. This suggests that transcription control of SACPD may not be a crucial factor for regulating oleic acid content in soybean. FAD2-1A and FAD2-1B gene expression in stage 4 seeds was comparable at the normal temperature, but a change in growth temperature to either side of the norm resulted in increased expression of FAD2-1B over FAD2-1A, slight at the warm temperature, but more pronounced at the cold temperature. The three omega-3 fatty acid desaturase genes exhibited the highest levels of transcript accumulation in stage 4 seeds at the cold temperature, with FAD3A levels 1.3 to 1.8 fold higher than 3B and 3C.;The fatty acid composition of the seeds at different stages of development was determined in conjunction with steady state transcript levels. Results show that the stearic acid content of A6 had the most dramatic response of the three soybean lines to temperature manipulation. Stearic acid content increased at the warmer temperature for all stages of A6, but for Dare and N01-3544 the percentage change in 18:0 was slight and net negative. Conversely, growth at the cold temperature resulted in the most dramatic reduction (48%) of stearic acid content in A6. The oleate (18:1) concentration increased at the higher growth temperature compared to normal across all varieties and stages, with Dare showing the most dramatic (32%) increase in oleic acid content at the warm temperature. The increase in FAD2-1B transcript accumulation with decreasing temperature was associated with increasing 18:2 content in two of the three varieties. Increased GmFAD3A transcript accumulation was accompanied by an increase in 18:3 in all three soybean varieties examined.;The differences in steady state mRNA levels we observed could be due to changes in transcription rate or mRNA stability. In light of this, further studies to measure desaturase activity under specific temperature regimes are needed in order to clarify the linkages of transcript level to enzyme activity and the fatty acid composition in developing soybean seeds.
机译:大豆[Glycine max(L.)Merr。]是世界上生产和消费的最大的油料作物。作为油料种子,大豆为牲畜和家禽饲料提供了高质量的蛋白质,并且该油被广泛用于世界各地的烹饪和食品制造行业。大豆生产者已经着眼于改善油性状,将其作为优先研究领域,以提高美国大豆的市场份额。大豆种子中的油脂含量约为18%,标准商品大豆油是五种脂肪酸的混合物。棕榈酸(11%),硬脂酸(4%),油酸(22%),亚油酸(53%)和亚麻酸(8%)。单不饱和脂肪酸含量高的油具有增强的氧化稳定性,从而消除了氢化的需要并消除了反式脂肪的产生。含有反式脂肪酸的食品目前是一个主要的健康问题,因此,大豆育种家和分子遗传学家已受到挑战,需要有效地改变脂肪酸组成以满足各种行业的特定需求。脂肪酸去饱和酶是负责提取两个氢原子后将双键(通常为Z或顺式构象)插入烷基链的酶。许多动植物脂质的物理特性和营养价值都由去饱和酶决定。大豆油的质量在经济上和从营养的角度来看都是至关重要的,并且在很大程度上取决于多不饱和脂肪酸与单不饱和脂肪酸的比例。温度在油料种子植物的最终脂质含量中也起着重要作用。在这项研究中,我们设计并使用了以下脂肪酸去饱和酶的基因特异性引物;硬脂酰ACP去饱和酶(SACPD),omega-6脂肪酸去饱和酶(FAD2-1)和omega-3脂肪酸去饱和酶(FAD3),以表征大豆品种。通过量化种子发育各个阶段的转录积累,进一步确定了温度对这些去饱和酶基因表达的影响。我们调查了51个大豆品系,发现每个品系都包含两个SACPD基因(A和B),这些基因在外显子中具有明显的氨基酸差异3.该品种还具有两个FAD2-1(A和B)和三个FAD3(A,B,C)基因。可溶性Delta9硬脂酰基-ACP去饱和酶将第一个双键引入到碳9和10之间的硬脂酰基-ACP(18:0-ACP)中,生成油酰基-ACP(18:1Delta9 -ACP)。微粒体o-6去饱和酶催化第一个质体外去饱和并将油酸转化为亚油酸。微粒体o-3脂肪酸去饱和酶(FAD3s)催化第三个双键插入亚油酸(18:2)的酸前体中,产生亚麻酸(18:3)酸。;冷影响的分析(22/18) °C),正常(26/22°C)和温暖(30/26°C)的温度对这些去饱和酶基因的转录本积累显示出一些差异。随着品种Dare,A6(高硬脂酸系)和N01-3544(中油酸系)温度升高,SACPD-A和-B的转录本积累最多降低69%。这三个品系的油酸含量与在温暖和寒冷温度下SACPD表达水平成反比。这表明SACPD的转录控制可能不是调节大豆中油酸含量的关键因素。在正常温度下,第4阶段种子中的FAD2-1A和FAD2-1B基因表达具有可比性,但正常温度下任一侧的生长温度变化导致FAD2-1B的表达高于FAD2-1A,在温暖的温度下略有增加,但在低温下更为明显。在低温下,三个omega-3脂肪酸去饱和酶基因在第4阶段种子中表现出最高水平的转录积累,FAD3A水平比3B和3C高1.3至1.8倍;结合稳态转录水平确定发育。结果表明,A6的硬脂酸含量对三种大豆系的温度调节反应最为显着。在A6的所有阶段,硬脂酸含量在较高的温度下都会增加,但对于Dare和N01-3544,18:0的百分比变化很小,而净负值。相反,在低温下生长会导致A6中的硬脂酸含量下降幅度最大(48%)。在所有品种和阶段,与正常相比,在较高的生长温度下油酸盐(18:1)浓度增加,在温暖的温度下Dare表现出最大的油酸含量增加(32%)。随着温度降低,FAD2-1B转录本积累的增加与三个品种中两个品种的18:2含量增加相关。在所有检测的三个大豆品种中,GmFAD3A转录物积累的增加都伴随着18:3的增加。我们观察到的稳态mRNA水平的差异可能是由于转录速率或mRNA稳定性的变化所致。鉴于此,需要进一步研究以测量特定温度下的去饱和酶活性,以阐明转录水平与酶活性和发育中的大豆种子中脂肪酸组成的联系。

著录项

  • 作者

    Byfield, Grace Eleanor.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号