首页> 外文学位 >Plasticity in copper thin films: An experimental investigation of the effect of microstructure.
【24h】

Plasticity in copper thin films: An experimental investigation of the effect of microstructure.

机译:铜薄膜的可塑性:微观结构影响的实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical behavior of freestanding Cu thin films is investigated using the plane-strain bulge test. Finite element analysis of the bulge test technique confirms that the measurement is highly accurate and reliable. A versatile specimen fabrication process using Si micromachining is developed and an automated bulge test apparatus with high displacement and pressure measurement resolutions is constructed. The elastic-plastic behavior of Cu films is studied with emphasis on the effects of microstructure, film thickness, and surface passivation on the plastic response of the films. For that purpose, Cu films with a range of thickness and microstructure and with different surface passivation conditions are prepared by electroplating or sputtering. The microstructure is carefully characterized and the stress-strain curves are measured. The mechanical properties are determined as a function of film thickness and microstructure for films both with and without surface passivation. The stiffness of the Cu films varies with film thickness because of changes in the crystallographic texture of the films and the elastic anisotropy of Cu. No modulus deficit is observed. The yield stress of unpassivated films varies mainly with the average grain size, while film thickness and texture have a negligible effect. The yield stress follows the classical Hall-Petch relation with a coefficient close to that for bulk Cu. The results indicate that grain boundary strengthening is the main strengthening mechanism for unpassivated Cu films. Passivated films exhibit increased yield stress and work-hardening rate, as well as a distinct Bauschinger effect with the reverse plastic flow already occurring on unloading. Moreover, the yield stress increases with decreasing film thickness. Comparison of the experimental results with strain-gradient plasticity and discrete dislocation simulations suggests that the presence of any film-passivation interface restricts dislocation motion and results in the formation of a boundary layer with high dislocation density near the interface, which leads to a back stress field that superimposes on the applied stress field in the film. The directionality of the back stress leads to plastic flow asymmetry: it increases the flow stress on loading but assists reverse plastic flow on unloading. The boundary layer does not scale with the film thickness; hence the influence of the back stress increases with decreasing film thickness.
机译:使用平面应变凸起试验研究了独立式Cu薄膜的力学行为。膨胀测试技术的有限元分析证实了该测量是高度准确和可靠的。开发了一种使用Si微加工的通用标本制造工艺,并构建了具有高位移和压力测量分辨率的自动化凸出测试设备。研究了铜膜的弹塑性行为,重点研究了微观结构,膜厚度和表面钝化对膜塑性响应的影响。为此,通过电镀或溅射来制备具有一定厚度和微观结构以及具有不同表面钝化条件的Cu膜。仔细地表征了微结构并测量了应力-应变曲线。对于具有和没有表面钝化的膜,机械性能都取决于膜厚度和微观结构。 Cu膜的刚度随着膜的厚度而变化,这是由于膜的晶体学纹理的变化和Cu的弹性各向异性所致。没有观察到模量不足。未钝化膜的屈服应力主要随平均晶粒尺寸而变化,而膜厚度和织构的影响可忽略不计。屈服应力遵循经典的Hall-Petch关系,其系数接近于块状Cu的系数。结果表明,晶界强化是非钝化铜膜的主要强化机理。钝化膜表现出增加的屈服应力和加工硬化速率,以及明显的包辛格效应,卸载时已经发生了反向塑性流动。而且,屈服应力随着膜厚度的减小而增加。实验结果与应变梯度可塑性和离散位错模拟的比较表明,任何膜钝化界面的存在都会限制位错运动,并导致在界面附近形成具有高位错密度的边界层,从而导致背应力叠加在薄膜中施加应力场上的电场。背应力的方向性导致塑性流动不对称:它增加了加载时的流动应力,但有助于卸载时反向的塑性流动。边界层不随膜厚变化。因此,背应力的影响随着膜厚度的减小而增加。

著录项

  • 作者

    Xiang, Yong.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Engineering Materials Science.; Applied Mechanics.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;应用力学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号