首页> 外文学位 >Bionanoparticles as viable substrates to promote osteogenic differentiation of bone marrow stromal cells.
【24h】

Bionanoparticles as viable substrates to promote osteogenic differentiation of bone marrow stromal cells.

机译:离子纳米颗粒作为可活的底物,可促进骨髓基质细胞的成骨分化。

获取原文
获取原文并翻译 | 示例

摘要

Bone marrow stromal cells (BMSCs) have the potential to differentiate into osteoblasts, chondrocytes, adipocytes and smooth muscles. Although, they have shown great prospects in therapeutic and medical applications, less is known about the role that the nano environment plays on their differentiation potential. The first part of this dissertation focuses on investigating the effect of nanotopography on the promotion of osteogenic differentiation of BMSCs. The nanotopographies were created by coating 2D substrates with turnip yellow mosaic virus (TYMV) or tobacco mosaic virus (TMV) particles. TYMV and TMV are nanosized plant viruses with spherical and rod shaped morphology, respectively. These naturally occurring bionanoparticles offer unique properties, which can be employed to modulate cellular environment and study changes in cell behavior. The first part of the dissertation presents the study of temporal change in expression of specific genes during the osteogenic differentiation of BMSCs on nanoparticle coated wafers over the time course of 21 days. Differentiating BMSCs on virus coated substrates formed fully mineralized nodules and structures comprising of osteoblast-like cells around 14 days. Experimental evidence generated by real time quantitative PCR (qPCR) analyses, DNA microarrays and the detection of osteogenic markers using immunohistochemistry/cytochemical staining further corroborated that nanotopography promoted the osteogenic differentiation of BMSCs. Our studies strongly indicate that such viruses as biogenic nanoparticles can modulate the nanoenvironment of the substrate to influence differentiation potential of cells.Viral particles can present a variety of accessible amino acid functionalities on their outer protein shells. Therefore, the second part of the dissertation focuses on the study of the synergistic effect of nanotopography and multivalent ligand display obtained by chemically tailoring these nanoparticles with ligands affecting the cell growth and differentiation. We primarily selected the ligands such as phosphates which are known to play significant role in osteogenic differentiation pathway. The changes in gene regulation and expression during osteogenic differentiation of BMSCs were studied. Our data indicate that the presence of cell specific ligands combined with nanotopography can further enhance the expression of osteospecific genes. In order to develop functional biomaterials, these nanosystems demonstrate great potentials to modulate the cell environment and gain insight into corresponding cellular response.The last part of this study focuses on the self assembly of nanoparticles at liquid-liquid interface. To study the self assembly process at the liquid interface, emulsion and flat interface systems were employed. The data demonstrate that, although the nanoparticle assembly at the curved and flat interface share similar principle, the outcome of the assembly process is completely different. In the case of emulsion system, equilibrium is achieved yielding a disordered one layer of nanoparticles at the interface whereas at planar interface the kinetics can be manipulated by increasing the viscosity of the system resulting in highly ordered long range arrays. These two methods of bionanoparticle assemblies open unique opportunities in fabrication of nanostructured materials and for the generation of functional, hierarchically ordered systems.Collectively, the research presented in this dissertation explores into the unique properties of these biogenic nanoparticles, and attempts to employ them as model systems to gain insights into the fabrication of functional nanomaterials and biomaterials for medicinal applications.
机译:骨髓基质细胞(BMSC)具有分化成成骨细胞,软骨细胞,脂肪细胞和平滑肌的潜力。尽管它们在治疗和医学应用中显示出了广阔的前景,但人们对纳米环境在其分化潜力中所起的作用知之甚少。本文的第一部分重点研究纳米形貌对促进骨髓间充质干细胞成骨分化的影响。通过用萝卜黄色花叶病毒(TYMV)或烟草花叶病毒(TMV)颗粒涂覆2D底物来创建纳米形貌。 TYMV和TMV分别是具有球形和杆状形态的纳米级植物病毒。这些天然存在的生物纳米粒子具有独特的特性,可用于调节细胞环境并研究细胞行为的变化。论文的第一部分提出了在21天的时间过程中,在纳米颗粒涂覆的晶片上的骨髓间充质干细胞成骨分化过程中,特定基因表达随时间变化的研究。在病毒包被的基质上分化的BMSC在14天左右就形成了完全矿化的结节和由成骨样细胞组成的结构。实时定量PCR(qPCR)分析,DNA芯片和使用免疫组织化学/细胞化学染色检测成骨标志物产生的实验证据进一步证实了纳米形貌促进了BMSCs的成骨分化。我们的研究有力地表明,诸如生物纳米粒子之类的病毒可以调节底物的纳米环境,从而影响细胞的分化潜力。病毒粒子可以在其蛋白质外壳上呈现多种可利用的氨基酸功能。因此,本文的第二部分着重研究纳米形貌与多价配体展示的协同效应,该效应是通过用影响细胞生长和分化的配体化学修饰这些纳米颗粒而获得的。我们首先选择了已知在成骨分化途径中起重要作用的配体,例如磷酸盐。研究了骨髓间充质干细胞成骨分化过程中基因调控和表达的变化。我们的数据表明与纳米形貌相结合的细胞特异性配体的存在可以进一步增强骨特异性基因的表达。为了开发功能性生物材料,这些纳米系统具有巨大的潜力来调节细胞环境并深入了解相应的细胞反应。本研究的最后一部分着眼于纳米粒子在液-液界面的自组装。为了研究液体界面的自组装过程,采用了乳液和平面界面系统。数据表明,尽管在弯曲和平坦界面处的纳米颗粒组装体具有相似的原理,但是组装过程的结果却完全不同。在乳液体系的情况下,达到了平衡,在界面处产生了一层无序的纳米颗粒,而在平面界面处,可以通过增加系统的粘度来控制动力学,从而得到高度有序的长距离阵列。这两种生物纳米粒子组装方法为纳米结构材料的制造以及功能化,有序的系统的产生提供了独特的机会。总体而言,本论文提出的研究探索了这些生物纳米粒子的独特性质,并试图将其用作模型。系统,以了解用于医学用途的功能纳米材料和生物材料的制造。

著录项

  • 作者

    Kaur, Gagandeep.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号