首页> 外文会议>Pacific Rim Meeting on Electrochemical and Solid-State Science >Electrochemical and Dynamic Characterization of a 6-Cell Solid Oxide Cells Stack in Steam Electrolysis and Steam and Carbon Dioxide Co-Electrolysis
【24h】

Electrochemical and Dynamic Characterization of a 6-Cell Solid Oxide Cells Stack in Steam Electrolysis and Steam and Carbon Dioxide Co-Electrolysis

机译:蒸汽电解和蒸汽和二氧化碳共电解中6细胞固体氧化物细胞堆的电化学和动态特征

获取原文

摘要

High temperature steam electrolysis and co-electrolysis of steam and carbon dioxide for hydrogen and syngas production is gaining attention for its potential to play a key role in the production of renewable fuels and for long-term energy storage. Unlocking a longer lifetime and lower costs for these systems is required if they are to be widely deployed. In this work, we consider a 6-cell Solid Oxide Cell (SOC) short-stack, manufactured by SOLID power S.p.a. (Italy), that has been installed and tested at UC Irvine. The short-stack is installed in a test bench that maintains the operating temperature in a controlled range of 650-850°C, via an electric furnace. The cells are characterized by an 8 mol% Y_2O_3 stabilized Zirconia (YSZ) electrolyte (8 ± 2 μm) supported on a conventional porous Ni/YSZ anode electrode (240 ± 20 μm). The cathode electrode is comprised of a composite of metallic perovskite Sr-doped LaMnO_3 (LSM) and oxide-ion electrolyte YSZ (40 ± 10 μm). The active area of each cell is 80 cm~2. The aim of the study is the experimental characterization of the short-stack via electrochemical and dynamic techniques to: i) characterize stack performance in steady-state; ii) investigate single cell degradation and interdependencies between adjacent cell operating conditions to determine stack degradation; and iii) determine characteristic time responses of thermal, fluid-dynamic and electrochemical phenomena. The experiments are conducted for both steam electrolysis and co-electrolysis of steam and carbon dioxide. The experimental electrochemical methods employed include chronopotentiometry, electrochemical impedance spectroscopy and current interrupt. Moreover, fluid-dynamic step response and thermal ramp dynamic response of the stack are evaluated to achieve a better understanding of the effect of an operating control system on local fuel starvation and local temperature hot spot regions, which are possible contributors to increased degradation.
机译:高温蒸汽电解和氢气和二氧化碳的氢气和合成气的二氧化碳的电解正在促使其在可再生燃料生产和长期储能中发挥关键作用的关注。如果要广泛部署,则需要解锁更长的生命周期并降低这些系统的成本。在这项工作中,我们考虑通过固体动力S.A.制造的6细胞固体氧化物电池(SOC)短堆叠。 (意大利),已在UC Irvine安装和测试。短堆叠安装在测试台中,通过电炉将工作温度保持在650-850°C的控制范围内。细胞的特征在于常规多孔Ni / YSZ阳极(240±20μm)上负载的8mol%的Y_2O_3稳定的氧化锆(YSZ)电解质(8±2μm)。阴极电极由金属钙钛矿SR掺杂兰诺(LSM)和氧化物离子电解质YSZ(40±10μm)的复合物组成。每个电池的有源区为80cm〜2。该研究的目的是通过电化学和动态技术的短堆叠的实验表征:i)在稳态中表征堆叠性能; ii)研究相邻小区操作条件之间的单细胞劣化和相互依赖性,以确定堆栈劣化;和III)确定热,流体动力和电化学现象的特征时间响应。对蒸汽电解和蒸汽和二氧化碳的共电解进行实验。所用的实验电化学方法包括步数术,电化学阻抗光谱和电流中断。此外,评估堆栈的流体动力学步进响应和热斜坡动力响应,以便更好地理解操作控制系统对局部燃料饥饿和局部温度热点区域的影响,这是增加降解的贡献者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号